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Automated Browsers
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The Problem



SSRF Attacks
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SSR vs SSB

Server-Side Request (SSR)
• Use case: Extract content from text document (HTML, JSON, …)

• Tools: wget, curl, HTTP libraries …

Server-Side Browser (SSB)
• Use case: Create screenshot of rendered website

• Tools: PhantomJS, Headless Chrome, Puppeteer, Playwright …

Parse and execute the response
(on top of all problems of SSRs)
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Flash poll

Who here regularly updates system-wide
packages on their devices and servers?

apt, pacman, brew, etc.
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Flash poll

Who here regularly updates project-specific
packages on their devices and servers?

npm, pip, maven, etc.
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Outdated Browsers

Browsers often have vulnerabilities with high/critical severity
• Usually disclosed 90 days after fix

• Some with public PoC exploits

No problem, as browsers update automatically … ?

On consumer devices yes - but SSBs do not!
• “Each version of Puppeteer bundles a specific version of Chromium –

the only version it is guaranteed to work with.” [1]

[1] https://pptr.dev/faq#q-why-doesnt-puppeteer-vxxx-work-with-chromium-vyyy
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The Issue in a Nutshell

Regularly update both your system packages AND project dependencies!
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CVE: 2020-16014

CVSS: 9.6 Critical



Attack Scenario
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Attack Scenario
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Attack Scenario
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Attack Scenario
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Fusion!!
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A06:2021-Vulnerable and 
Outdated Components

A10:2021-Server-Side 
Request Forgery



The Large-Scale Study



Automatic Detection

How to trigger server-side requests?

How to discover the server-side browsers among them?

How to determine their actual browser version?

How many are vulnerable to public exploits?

Large scale study on 100,000 websites
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Discovering SSRs
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The goal



Discovering SSRs

3 ways to entice websites to visit our unique URLs

• Forms – Submit with our URLs

• Headers – Set our URLs as Referer header on each request

• Query – Modify discovered URLs and replay with different values

http://example.com?from=foo.com&id=3

http://example.com?from=id9543.our-server.com&id=3
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Identifying SSBs
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Identifying SSBs

Our server replies with HTML + JavaScript
• JavaScript collects some client-side information and sends it

• If this happens, it is a browser

How do we know this was not a human visitor?
• Likely, if visit happens within the first 3 minutes after our URL submission

Visited 2.6M pages on 79k sites
• 168,055 incoming requests from 4850 domains

• 3,264 requests with server-side browser from 254 domains (JS execution and within 3 minutes)
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Detecting Browser Versions

User agent string too easy to spoof
• Find behavioral differences

• Extract all JavaScript objects in window
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Detecting Browser Versions

User agent string too easy to spoof
• Find behavioral differences

• Extract all JavaScript objects in window

• Compare with compatibility data from MDN to find highest possible version

Feature of window Feature supported since Feature exists in sample

Chrome Firefox Opera Safari Sample 1 Sample 2

RTCCertificate 49 42 36 12 ✓ ✓

MutationObserver 26 14 15 7 ✓ ✓

WeakRef 84 79 - - ✓ ✓

TrustedScript 83 - 69 - ✓ ✗

AggregateError 85 79 - 14 ✗ ✓

31



Detecting Browser Versions

User agent string too easy to spoof
• Find behavioral differences

• Extract all JavaScript objects in window

• Compare with compatibility data from MDN to find highest possible version

Feature of window Feature supported since Feature exists in sample

Chrome Firefox Opera Safari Sample 1 Sample 2

RTCCertificate 49 42 36 12 ✓ ✓

MutationObserver 26 14 15 7 ✓ ✓

WeakRef 84 79 - - ✓ ✓

TrustedScript 83 - 69 - ✓ ✗

AggregateError 85 79 - 14 ✗ ✓

32



Detecting Browser Versions

User agent string too easy to spoof
• Find behavioral differences

• Extract all JavaScript objects in window

• Compare with compatibility data from MDN to find highest possible version

Feature of window Feature supported since Feature exists in sample

Chrome Firefox Opera Safari Sample 1 Sample 2

RTCCertificate 49 42 36 12 ✓ ✓

MutationObserver 26 14 15 7 ✓ ✓

WeakRef 84 79 - - ✓ ✓

TrustedScript 83 - 69 - ✓ ✗

AggregateError 85 79 - 14 ✗ ✓

33



Detecting Browser Versions

User agent string too easy to spoof
• Find behavioral differences

• Extract all JavaScript objects in window

• Compare with compatibility data from MDN to find highest possible version

Feature of window Feature supported since Feature exists in sample

Chrome Firefox Opera Safari Sample 1 Sample 2

RTCCertificate 49 42 36 12 ✓ ✓

MutationObserver 26 14 15 7 ✓ ✓

WeakRef 84 79 - - ✓ ✓

TrustedScript 83 - 69 - ✓ ✗

AggregateError 85 79 - 14 ✗ ✓

34



Detecting Browser Versions

User agent string too easy to spoof
• Find behavioral differences

• Extract all JavaScript objects in window

• Compare with compatibility data from MDN to find highest possible version

Feature of window Feature supported since Feature exists in sample

Chrome Firefox Opera Safari Sample 1 Sample 2

RTCCertificate 49 42 36 12 ✓ ✓

MutationObserver 26 14 15 7 ✓ ✓

WeakRef 84 79 - - ✓ ✓

TrustedScript 83 - 69 - ✓ ✗

AggregateError 85 79 - 14 ✗ ✓

35



Detecting Browser Versions

User agent string too easy to spoof
• Find behavioral differences

• Extract all JavaScript objects in window

• Compare with compatibility data from MDN to find highest possible version

Feature of window Feature supported since Feature exists in sample

Chrome Firefox Opera Safari Sample 1 Sample 2

RTCCertificate 49 42 36 12 ✓ ✓

MutationObserver 26 14 15 7 ✓ ✓

WeakRef 84 79 - - ✓ ✓

TrustedScript 83 - 69 - ✓ ✗

AggregateError 85 79 - 14 ✗ ✓

36



Detecting Browser Versions

User agent string too easy to spoof
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Chrome 84
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Detecting Browser Versions

• User agent string too easy to spoof
• Find behavioral differences

• Extract all JavaScript objects in window

• Compare with compatibility data from MDN to find highest possible version

Feature of window Feature supported since Feature exists in sample

Chrome Firefox Opera Safari Sample 1 Sample 2

RTCCertificate 49 42 36 12 ✓ ✓

MutationObserver 26 14 15 7 ✓ ✓

WeakRef 84 79 - - ✓ ✓

TrustedScript 83 - 69 - ✓ ✗

AggregateError 85 79 - 14 ✗ ✓

Chrome 84 Firefox >= 79
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If you liked this, you might also enjoy…
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Liars

About 25% lied about their user agent!
• Some cases HTTP user agent != JS user agent

• Most cases user agent != platform

navigator.platform “Linux x86_64” but user agent
• CPU iPhone OS 13_7 [...] Version/13.1.2

• Windows NT 6.1 [...] Chrome/83.0.4103.106 

• iPad; CPU OS 11_4 [...] Version/11.0

• …
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Browser Versions

Data collection in March 2021
• At that time Chrome 88/89 was stable

Most popular browsers in our data
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Browser Versions

Data collection in March 2021
• At that time Chrome 88/89 was stable

Most popular browsers in our data
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• 19%:                    from Jan 2021

• 28%: from July 2020

• 18%: from Aug 2020

• 16%: from Oct 2020

• 2%:    from Aug 2020

Chrome 88

Chrome 84

Chrome 85

Chrome 86

Edge 85

Browser CVE

Chrome 84 CVE 2020-6559

Chrome 85 CVE 2020-6575

Chrome 86 CVE 2020-16015

Edge 85 CVE 2020-6574



Vulnerable SSBs Distribution

254 domains with SSBs
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Vulnerable SSBs Distribution

168 / 254 domains with SSBs vulnerable to public exploits

0

10

20

30

40

50

60

10k 30k 50k 70k 90k

# 
o

f 
si

te
s 

w
it

h
 S

SB

Tranco Rank

All SSBs

Vulnerable SSBs

44Popular websites are here



The Takeaways



Countermeasures

First, prevent classical SSRF attacks
• Isolate the machine from your internal network
• Enforce http(s)://

Keep the browser diligently up-to-date
• Regular updates of all your project’s dependencies
• Be aware that various tools might miss these ’bundled’ vulnerabilities

Isolate the browser from the OS
• Run as non-privileged user, consider additional hardening
• Make sure that user has no access to sensitive secrets
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On top of that, for server-side browsers:



Summary

• Unique attack surface
• Execute untrusted code on server-side

• Browsers contain critical bugs at high rate

• Are not updated automatically

Identified 168/254 vulnerable SSBs 

2 out of 3 deployments vulnerable!

Really dangerous combination!
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