
Server-Side Browsers:
Exploring the Web's Hidden Attack Surface

Marius Musch
TU Braunschweig

Joint work with Robin Kirchner, Max Boll, and Martin Johns

The Scenario

Request for Preview

3

Request for Preview

4

Request for Preview

5

Automated Browsers

6

Browser for Preview

7

Browser for Preview

8

Browser for Preview

9

The Problem

SSRF Attacks

11

SSRF Attacks

12

SSRF Attacks

13

SSR vs SSB

Server-Side Request (SSR)
• Use case: Extract content from text document (HTML, JSON, …)

• Tools: wget, curl, HTTP libraries …

Server-Side Browser (SSB)
• Use case: Create screenshot of rendered website

• Tools: PhantomJS, Headless Chrome, Puppeteer, Playwright …

Parse and execute the response
(on top of all problems of SSRs)

14

Flash poll

Who here regularly updates system-wide
packages on their devices and servers?

apt, pacman, brew, etc.

15

Flash poll

Who here regularly updates project-specific
packages on their devices and servers?

npm, pip, maven, etc.

16

Outdated Browsers

Browsers often have vulnerabilities with high/critical severity
• Usually disclosed 90 days after fix

• Some with public PoC exploits

No problem, as browsers update automatically … ?

On consumer devices yes - but SSBs do not!
• “Each version of Puppeteer bundles a specific version of Chromium –

the only version it is guaranteed to work with.” [1]

[1] https://pptr.dev/faq#q-why-doesnt-puppeteer-vxxx-work-with-chromium-vyyy

17

The Issue in a Nutshell

Regularly update both your system packages AND project dependencies!

18

CVE: 2020-16014

CVSS: 9.6 Critical

Attack Scenario

19

Attack Scenario

20

Attack Scenario

21

Attack Scenario

22

Fusion!!

23

A06:2021-Vulnerable and
Outdated Components

A10:2021-Server-Side
Request Forgery

The Large-Scale Study

Automatic Detection

How to trigger server-side requests?

How to discover the server-side browsers among them?

How to determine their actual browser version?

How many are vulnerable to public exploits?

Large scale study on 100,000 websites

25

Discovering SSRs

26

The goal

Discovering SSRs

3 ways to entice websites to visit our unique URLs

• Forms – Submit with our URLs

• Headers – Set our URLs as Referer header on each request

• Query – Modify discovered URLs and replay with different values

http://example.com?from=foo.com&id=3

http://example.com?from=id9543.our-server.com&id=3

27

Identifying SSBs

28

Identifying SSBs

Our server replies with HTML + JavaScript
• JavaScript collects some client-side information and sends it

• If this happens, it is a browser

How do we know this was not a human visitor?
• Likely, if visit happens within the first 3 minutes after our URL submission

Visited 2.6M pages on 79k sites
• 168,055 incoming requests from 4850 domains

• 3,264 requests with server-side browser from 254 domains (JS execution and within 3 minutes)

29

Detecting Browser Versions

User agent string too easy to spoof
• Find behavioral differences

• Extract all JavaScript objects in window

30

Detecting Browser Versions

User agent string too easy to spoof
• Find behavioral differences

• Extract all JavaScript objects in window

• Compare with compatibility data from MDN to find highest possible version

Feature of window Feature supported since Feature exists in sample

Chrome Firefox Opera Safari Sample 1 Sample 2

RTCCertificate 49 42 36 12 ✓ ✓

MutationObserver 26 14 15 7 ✓ ✓

WeakRef 84 79 - - ✓ ✓

TrustedScript 83 - 69 - ✓ ✗

AggregateError 85 79 - 14 ✗ ✓

31

Detecting Browser Versions

User agent string too easy to spoof
• Find behavioral differences

• Extract all JavaScript objects in window

• Compare with compatibility data from MDN to find highest possible version

Feature of window Feature supported since Feature exists in sample

Chrome Firefox Opera Safari Sample 1 Sample 2

RTCCertificate 49 42 36 12 ✓ ✓

MutationObserver 26 14 15 7 ✓ ✓

WeakRef 84 79 - - ✓ ✓

TrustedScript 83 - 69 - ✓ ✗

AggregateError 85 79 - 14 ✗ ✓

32

Detecting Browser Versions

User agent string too easy to spoof
• Find behavioral differences

• Extract all JavaScript objects in window

• Compare with compatibility data from MDN to find highest possible version

Feature of window Feature supported since Feature exists in sample

Chrome Firefox Opera Safari Sample 1 Sample 2

RTCCertificate 49 42 36 12 ✓ ✓

MutationObserver 26 14 15 7 ✓ ✓

WeakRef 84 79 - - ✓ ✓

TrustedScript 83 - 69 - ✓ ✗

AggregateError 85 79 - 14 ✗ ✓

33

Detecting Browser Versions

User agent string too easy to spoof
• Find behavioral differences

• Extract all JavaScript objects in window

• Compare with compatibility data from MDN to find highest possible version

Feature of window Feature supported since Feature exists in sample

Chrome Firefox Opera Safari Sample 1 Sample 2

RTCCertificate 49 42 36 12 ✓ ✓

MutationObserver 26 14 15 7 ✓ ✓

WeakRef 84 79 - - ✓ ✓

TrustedScript 83 - 69 - ✓ ✗

AggregateError 85 79 - 14 ✗ ✓

34

Detecting Browser Versions

User agent string too easy to spoof
• Find behavioral differences

• Extract all JavaScript objects in window

• Compare with compatibility data from MDN to find highest possible version

Feature of window Feature supported since Feature exists in sample

Chrome Firefox Opera Safari Sample 1 Sample 2

RTCCertificate 49 42 36 12 ✓ ✓

MutationObserver 26 14 15 7 ✓ ✓

WeakRef 84 79 - - ✓ ✓

TrustedScript 83 - 69 - ✓ ✗

AggregateError 85 79 - 14 ✗ ✓

35

Detecting Browser Versions

User agent string too easy to spoof
• Find behavioral differences

• Extract all JavaScript objects in window

• Compare with compatibility data from MDN to find highest possible version

Feature of window Feature supported since Feature exists in sample

Chrome Firefox Opera Safari Sample 1 Sample 2

RTCCertificate 49 42 36 12 ✓ ✓

MutationObserver 26 14 15 7 ✓ ✓

WeakRef 84 79 - - ✓ ✓

TrustedScript 83 - 69 - ✓ ✗

AggregateError 85 79 - 14 ✗ ✓

36

Detecting Browser Versions

User agent string too easy to spoof
• Find behavioral differences

• Extract all JavaScript objects in window

• Compare with compatibility data from MDN to find highest possible version

Feature of window Feature supported since Feature exists in sample

Chrome Firefox Opera Safari Sample 1 Sample 2

RTCCertificate 49 42 36 12 ✓ ✓

MutationObserver 26 14 15 7 ✓ ✓

WeakRef 84 79 - - ✓ ✓

TrustedScript 83 - 69 - ✓ ✗

AggregateError 85 79 - 14 ✗ ✓

Chrome 84

37

Detecting Browser Versions

• User agent string too easy to spoof
• Find behavioral differences

• Extract all JavaScript objects in window

• Compare with compatibility data from MDN to find highest possible version

Feature of window Feature supported since Feature exists in sample

Chrome Firefox Opera Safari Sample 1 Sample 2

RTCCertificate 49 42 36 12 ✓ ✓

MutationObserver 26 14 15 7 ✓ ✓

WeakRef 84 79 - - ✓ ✓

TrustedScript 83 - 69 - ✓ ✗

AggregateError 85 79 - 14 ✗ ✓

57

Detecting Browser Versions

• User agent string too easy to spoof
• Find behavioral differences

• Extract all JavaScript objects in window

• Compare with compatibility data from MDN to find highest possible version

Feature of window Feature supported since Feature exists in sample

Chrome Firefox Opera Safari Sample 1 Sample 2

RTCCertificate 49 42 36 12 ✓ ✓

MutationObserver 26 14 15 7 ✓ ✓

WeakRef 84 79 - - ✓ ✓

TrustedScript 83 - 69 - ✓ ✗

AggregateError 85 79 - 14 ✗ ✓

Chrome 84 Firefox >= 79

58

If you liked this, you might also enjoy…

38

Liars

About 25% lied about their user agent!
• Some cases HTTP user agent != JS user agent

• Most cases user agent != platform

navigator.platform “Linux x86_64” but user agent
• CPU iPhone OS 13_7 [...] Version/13.1.2

• Windows NT 6.1 [...] Chrome/83.0.4103.106

• iPad; CPU OS 11_4 [...] Version/11.0

• …

39

Browser Versions

Data collection in March 2021
• At that time Chrome 88/89 was stable

Most popular browsers in our data

40

Chrome 84
28%

Chrome 88
19%

Chrome 85
18%

Chrome 86
16%

Edge 85
2%

• 19%: from Jan 2021

• 28%: from July 2020

• 18%: from Aug 2020

• 16%: from Oct 2020

• 2%: from Aug 2020

Chrome 88

Chrome 84

Chrome 85

Chrome 86

Edge 85

Browser Versions

Data collection in March 2021
• At that time Chrome 88/89 was stable

Most popular browsers in our data

41

Chrome 84
28%

Chrome 88
19%

Chrome 85
18%

Chrome 86
16%

Edge 85
2%

• 19%: from Jan 2021

• 28%: from July 2020

• 18%: from Aug 2020

• 16%: from Oct 2020

• 2%: from Aug 2020

Chrome 88

Chrome 84

Chrome 85

Chrome 86

Edge 85

Browser Versions

Data collection in March 2021
• At that time Chrome 88/89 was stable

Most popular browsers in our data

42

• 19%: from Jan 2021

• 28%: from July 2020

• 18%: from Aug 2020

• 16%: from Oct 2020

• 2%: from Aug 2020

Chrome 88

Chrome 84

Chrome 85

Chrome 86

Edge 85

Browser CVE

Chrome 84 CVE 2020-6559

Chrome 85 CVE 2020-6575

Chrome 86 CVE 2020-16015

Edge 85 CVE 2020-6574

Vulnerable SSBs Distribution

254 domains with SSBs

0

10

20

30

40

50

60

10k 30k 50k 70k 90k

o

f
si

te
s

w
it

h
 S

SB

Tranco Rank

All SSBs

43Popular websites are here

Vulnerable SSBs Distribution

168 / 254 domains with SSBs vulnerable to public exploits

0

10

20

30

40

50

60

10k 30k 50k 70k 90k

o

f
si

te
s

w
it

h
 S

SB

Tranco Rank

All SSBs

Vulnerable SSBs

44Popular websites are here

The Takeaways

Countermeasures

First, prevent classical SSRF attacks
• Isolate the machine from your internal network
• Enforce http(s)://

Keep the browser diligently up-to-date
• Regular updates of all your project’s dependencies
• Be aware that various tools might miss these ’bundled’ vulnerabilities

Isolate the browser from the OS
• Run as non-privileged user, consider additional hardening
• Make sure that user has no access to sensitive secrets

46

On top of that, for server-side browsers:

Summary

• Unique attack surface
• Execute untrusted code on server-side

• Browsers contain critical bugs at high rate

• Are not updated automatically

Identified 168/254 vulnerable SSBs

2 out of 3 deployments vulnerable!

Really dangerous combination!

47

marius.musch@gmail.com

@m4riuz Interested in job opportunities

	Default Section
	Slide 1

	Scenario
	Slide 2
	Slide 3: Request for Preview
	Slide 4: Request for Preview
	Slide 5: Request for Preview
	Slide 6: Automated Browsers
	Slide 7: Browser for Preview
	Slide 8: Browser for Preview
	Slide 9: Browser for Preview

	Background
	Slide 10
	Slide 11: SSRF Attacks
	Slide 12: SSRF Attacks
	Slide 13: SSRF Attacks
	Slide 14: SSR vs SSB
	Slide 15: Flash poll
	Slide 16: Flash poll
	Slide 17: Outdated Browsers
	Slide 18: The Issue in a Nutshell
	Slide 19: Attack Scenario
	Slide 20: Attack Scenario
	Slide 21: Attack Scenario
	Slide 22: Attack Scenario
	Slide 23: Fusion!!

	Discovering
	Slide 24
	Slide 25: Automatic Detection
	Slide 26: Discovering SSRs
	Slide 27: Discovering SSRs
	Slide 28: Identifying SSBs
	Slide 29: Identifying SSBs

	Fingerprinting
	Slide 30: Detecting Browser Versions
	Slide 31: Detecting Browser Versions
	Slide 32: Detecting Browser Versions
	Slide 33: Detecting Browser Versions
	Slide 34: Detecting Browser Versions
	Slide 35: Detecting Browser Versions
	Slide 36: Detecting Browser Versions
	Slide 37: Detecting Browser Versions
	Slide 38: If you liked this, you might also enjoy…
	Slide 39: Liars

	Version Results
	Slide 40: Browser Versions
	Slide 41: Browser Versions
	Slide 42: Browser Versions
	Slide 43: Vulnerable SSBs Distribution
	Slide 44: Vulnerable SSBs Distribution

	Discussion
	Slide 45
	Slide 46: Countermeasures
	Slide 47: Summary

