Hand Sanitizers in the Wild

A Large-scale Study of Custom JavaScript Sanitizer Functions

David Klein, Thomas Barber, Souphiane Bensalim, Ben Stock, Martin Johns

Institute for Application Security
Technische Universitat Braunschweig

david.klein@tu-braunschweig.de

" ICISPA

~ | HELMHOLTZ CENTER FOR
%% | INFORMATION SECURITY

Universitit
Braunschweig

Security Research

@

INSTITUTE FOR
APPLICATION
SECURITY

https://www.tu-braunschweig.de/ias
https://www.tu-braunschweig.de/
david.klein@tu-braunschweig.de

Motivation

>

Hand Sanitizer!! g ‘4 ;

o g s W N =

Client Side XSS: Root Cause

let name = location.hash.substr(l);

let greeting = "Hello, " + name;
/*

Application code
*/

div.innerHTML = greeting;

o g s W N =

Client Side XSS: Root Cause

let name = location.hash.substr(l);

let greeting = "Hello, " + name;
/*

Application code
*/

div.innerHTML = greeting;

Visiting:
foo.com#RuhrSec

Hello, RuhrSec

o g s W N =

Client Side XSS: Root Cause

let name = location.hash.substr(l);

let greeting = "Hello, " + name;
/*

Application code
*/

div.innerHTML = greeting;

Visiting:
foo.com#RuhrSec

Hello, RuhrSec

L - VN

Client Side XSS: Root Cause

let name = location.hash.substr(l);

let greeting = "Hello, " + name;
/*

Application code
3/

div.innerHTML = greeting;

Visiting:
foo.com#

Ut R W N =

Client Side XSS: Root Cause
No difference between data and markup in HTML

let name = location.hash.substr(l);

let greeting = "Hello, " + name;
/*

Application code
*/

div.innerHTML = greeting;

Ut R W N =

Client Side XSS: Root Cause

Source: Attacker controlled data

Source

let name = [location.hash| substr(1);

let greeting = "Hello, " + name;
/*

Application code
*/

div.innerHTML = greeting;

Ut R W N =

Client Side XSS: Root Cause
Sink: Turned into (executable) code

let name = location.hash.substr(l);

let greeting = "Hello, " + name;
/*

Application code
*/

|[div.innerHTML = greeting}
Sink

Ut R W N =

Client Side XSS: Root Cause

Unprotected data flow from source to sink

Source

let name = [location.hash| substr(1);

let greeting = "Hello, " + name;
/*
Application/ code
*/
|[div.innerHTML = greeting}

Sink

Client Side XSS: Protection

» Solution: Sanitizer

Client Side XSS: Protection

» Solution: Sanitizer
» Removes “dangerous chars” from input

Client Side XSS: Protection

» Solution: Sanitizer
» Removes “dangerous chars” from input
» Hand-written sanitizers dubbed hand sanitizer

© 0w N O s W N =

=
o

Client Side XSS: Protection

» Solution: Sanitizer
» Removes “dangerous chars” from input
» Hand-written sanitizers dubbed hand sanitizer

let name = location.hash.substr(l);
let greeting = "Hello, " + name;

/%

*/
greeting = |sanitize(greeting)| Sanitizer
/*

y

div.innerHTML = greeting;

© 0w N O s W N

=
[=}

Client Side XSS: Protection

» Solution: Sanitizer
» Removes “dangerous chars” from input
» Hand-written sanitizers dubbed hand sanitizer

Source
let name = [location.hash| substr(1);
let greeting = "Hello, " + name;
/%
*/

greeting = |sanitize(greeting)| Sanitizer
/*

*/
|[div.innerHTML = greeting}

Sink

© 0w N O s W N

=
[=}

Client Side XSS: Protection

» Solution: Sanitizer
» Removes “dangerous chars” from input
» Hand-written sanitizers dubbed hand sanitizer

Source
let name = [location.hash| substr(1);
let greeting = "Hgllo, " + name;
/%
*/

greeting = |sanitize(greeting)| Sanitizer

/%
*/... /

|[div.innerHTML = greeting}
Sink

Sanitizing: Difficulties

What about this?

Sanitizing: Difficulties

What about this?

1 function sanitize(s) {
2 return s.replace("<", "").replace(">", "");

3 F

Figure: HTML Sanitizer

Sanitizing: Difficulties

What about this?

function sanitize(s) {
return s.replace("<", "").replace(">", "");

}

Figure: HTML Sanitizer

Visiting:
foo.com#

Hello, img src=x onerror=alert('xss')

Sanitizing: Difficulties
What about this?

function sanitize(s) {
return s.replace("<", "").replace(">", "");

}

Figure: HTML Sanitizer

Visiting:
foo.com#<>

Sanitizing: Difficulties
What about this?

function sanitize(s) {
return s.replace("<", "").replace(">", "");

}

Figure: HTML Sanitizer

Visiting:
foo.com#<>

How to sanitize?

» We have 3 injection contexts
— HTML, HTML attribute and JavaScript

How to sanitize?

» We have 3 injection contexts

» Exploits require different characters per context

How to sanitize?

» We have 3 injection contexts

» Exploits require different characters per context

Characters to be encoded per injection context

Context OWASP Recommendations

HTML <>’ "g& except HTML encoded chars

HTML Attr. The quote characters (" and ’) as well as characters usable to break out
of unquoted attribute values (including: [spacel % * + , - / ; < =>~
and |), properties and event handlers

JavaScript non-alphanumeric except ,._ whitespace or hex/unicode encoded

Challenges for Developers

The JavaScript standard library has 3 functions that look somewhat related:

» escape, encodeURI, encodeURIcomponent

Challenges for Developers

The JavaScript standard library has 3 functions that look somewhat related:
» escape, encodeURI, encodeURIcomponent

=> None do what's required. . .

Challenges for Developers

The JavaScript standard library has 3 functions that look somewhat related:
» escape, encodeURI, encodeURIcomponent
=> None do what's required. . .

» They all encode a subset of “dangerous” characters

Challenges for Developers

The JavaScript standard library has 3 functions that look somewhat related:
» escape, encodeURI, encodeURIcomponent
=> None do what's required. . .

» They all encode a subset of “dangerous” characters

Challenges for Developers

The JavaScript standard library has 3 functions that look somewhat related:
» escape, encodeURI, encodeURIcomponent
=> None do what's required. . .

» They all encode a subset of “dangerous” characters

What now?

Challenges for Developers

The JavaScript standard library has 3 functions that look somewhat related:
» escape, encodeURI, encodeURIcomponent

=> None do what's required. . .
» They all encode a subset of “dangerous” characters

What now?

Hey, folks know regex!

Regular Expressions to the Rescue!

IF YOURE HAVIN' PERL
PROBLEMS T FEEL
BAD FoR Yo, SON—

3

T cor 99

i

S0 T LsED

i

Now T HAVE
100 PROBLEMS.

i

Figure: https://xkcd.com/1171/

https://xkcd.com/1171/

Regular Expressions to the Rescue!

IF YOURE HAVIN' PERL
PROBLEMS T FEEL
BAD FoR Yo, SON—

3

T cor 99

i

S0 T LsED

i

Now T HAVE
100 PROBLEMS.

i

Figure: https://xkcd.com/1171/

HTML is not a regular language. ..

https://xkcd.com/1171/

Regular Expressions to the Rescue!

IF YOURE HAVIN' PERL
PROBLEMS T FEEL
BAD FoR Yo, SON—

3

T cor 99

i

S0 T LsED

i

Now T HAVE
100 PROBLEMS.

i

Figure: https://xkcd.com/1171/

HTML is not a regular language. ..

=> Regular Expressions unsuited to parse it

https://xkcd.com/1171/

Regular Expressions to the Rescue!

n-'waaﬂmnanﬂa. T GOT 99 SOTUSED || Now T HAvE
PROBLEMS, 100 PROBLEMS.
Bnnt—'oemu sm—

B RTIRTT

Figure: https://xkcd.com/1171/

HTML is not a regular language. ..

=> Regular Expressions unsuited to parse it
» Parsing it requires to build and manipulate a DOM while traversing the input

https://xkcd.com/1171/

Sanitizing: Difficulties

Very difficult to get right. ..

Sanitizing: Difficulties

Very difficult to get right. ..

More than half of the DOM XSS root causes were due to bugs in HTML

sanitizers

—Google Research: Trusted Types - mid 2021 report

Large Scale Study

10

State of Sanitization on the Web

We asked ourselves two questions:

11

State of Sanitization on the Web

We asked ourselves two questions:

Q1: How prevalent are sanitizers?

11

State of Sanitization on the Web

We asked ourselves two questions:
Q1: How prevalent are sanitizers?

Q2: Are they actually secure?

11

Study: Setup

Data Collection

Evaluation

Sanitizer Extraction

Security Analysis

12

Project Foxhound

» Firefox fork enhanced with taint-tracking capabilities

13

Project Foxhound

» Firefox fork enhanced with taint-tracking capabilities

» Also records all operations that occurred on tainted values
— Deep insight into inner working of web application

13

Project Foxhound

» Firefox fork enhanced with taint-tracking capabilities

» Also records all operations that occurred on tainted values
— Deep insight into inner working of web application

» Open source, actively maintained and compatible with Playwright
=> good addition to security testing toolbelt

13

0 Data Collection

» Take our taint browser

14

o Data Collection

» Take our taint browser
» Visit top 20000 websites

14

0 Data Collection

» Take our taint browser

» Visit top 20000 websites
» Record data flows relevant to Client-Side XSS

14

0 Data Collection

» Take our taint browser

» Visit top 20000 websites
» Record data flows relevant to Client-Side XSS
— Occurred on 3887 domains

14

9 Sanitizer Detection

- location.hash
replace(/</, ’’)
replace(/>/, *?)
concat

concat
innerHTML
T

SN
N
NN

AN
~

N

N

NN
NN
NN
NNNNN
NN
NN

Is]

N

HE

9 Sanitizer Detection

e

greeting

innerHTML

N

location.hash

[sanitize} concat

AN

replace

replace

16

Sanitizer Detection

17

e Sanitizer Analysis

@#ﬂm

Q@m

18

e Sanitizer Analysis

e ® °
*
‘
’ﬁ

SemAttack

18

9 Sanitizer Analysis

& <
G
i <>

SemAttack

any char

Post Image

18

9 Sanitizer Analysis

<>

<>

SemAttack

any char

start

Post Image

<img src=x
onerror=alert(’XSS’)>

XSS Payload

18

9 Sanitizer Analysis

& <
G
o &

SemAttack

any char

start

Post Image

\
2
T

<img src=x
onerror=alert(’XSS’)>

XSS Payload

18

any char

<img src=x
onerror=alert (’XSS’)>

19

SemAttack

any char

<img src=x

onerror=alert (’XSS’)>

19

° Validation

Pre Image

any char
E . . / start (0)

SemAttack

<img src=x
onerror=alert (’XSS’)>

19

o Validation

Pre Image

!

Sanitizer Bypass

<><img src=x
onerror=alert(’XSS’)>

any char

<>

<>

SemAttack

<img src=x
onerror=alert (’XSS’)>

19

o Validation

Pre Image

Sanitizer Bypass

img src=x
onerror=alert(’XSS’)>

any char

<>

<>

SemAttack

<img src=x
onerror=alert (’XSS’)>

19

e Validation

Pre Image

L (—’0(/”‘

Sanitizer Bypass
<><img src=x
onerror=alert(’XSS’)>

SemAttack

any char

<img src=x
onerror=alert (’XSS’)>

Validate

19

Results

» 3887 out of 20000 websites contained interesting data flows.

20

Results

» 3887 out of 20000 websites contained interesting data flows.
» We found 705 unique sanitizers on 1415 out of those 3887 domains.

20

Results

» 3887 out of 20000 websites contained interesting data flows.
» We found 705 unique sanitizers on 1415 out of those 3887 domains.

» 88 sanitizers on 102 domains detected as insecure by SemAttack.

20

Results

h With Sanitizer
‘ 1 3rd Party Sanitizer
It Vulnerable Sanitizer
It Validated Sanitizer

(o)) (0]
o (@]

S
o

Number of Domains

20

0 5k 10k 15k 20k
Tranco Rank

21

Cabinet of Horrors

Effective against germs, but not against XSS payloads!

[R N

Optimized for specific Payload

function f(v) {
return v.replace(/'/g, "").replace(/\(/g, "")
.replace(/\)/g, "").replace(/alert/g, "");

+

23

[R N

Optimized for specific Payload

function f(v) { Delete all Single Quotes

return v.replace, "n).replace(/\(/g, "")
.replace(/\)/g, "").replace(/alert/g, "");
}

23

[V R S

Optimized for specific Payload

function f(v) {
return v.replace(/'/g, "").replace(/\(/g, "")

.replace "").replace(/alert/g, "");
}

Delete all Parentheses

23

[V R S

Optimized for specific Payload

function f(v) {
return v.replace(/'/g, "").replace(/\(/g, "")

.replace(/\)/g, "").replace(/alert/g, "");
’ Delete dangerous payload

23

[R N

Optimized for specific Payload

function f(v) {
return v.replace(/'/g, "").replace(/\(/g, "")
.replace(/\)/g, "").replace(/alert/g, "");

+

Issues:
» Real hackers do not use alert

23

[R N

Optimized for specific Payload

function f(v) {
return v.replace(/'/g, "").replace(/\(/g, "")
.replace(/\)/g, "").replace(/alert/g, "");

}

Issues:

» Real hackers do not use alert
» Removing Parentheses to prevent function calls seems reasonable?

23

[R N

Optimized for specific Payload

function f(v) {
return v.replace(/'/g, "").replace(/\(/g, "")
.replace(/\)/g, "").replace(/alert/g, "");

}

Issues:

» Real hackers do not use alert
» Removing Parentheses to prevent function calls seems reasonable?
— But.. . JavaScript is crazy

23

[R N

Optimized for specific Payload

function f(v) {
return v.replace(/'/g, "").replace(/\(/g, "")
.replace(/\)/g, "").replace(/alert/g, "");

}

Issues:

» Real hackers do not use alert
» Removing Parentheses to prevent function calls seems reasonable?

— But.. . JavaScript is crazy
— confirm xss~ works as well

23

N o s W N =

Wrong Context

function sanitize(v) {
return v.replace(/</g, "<")
.replace(/>/g, ">");
X
var url = 'http://example.org;cat=' +
sanitize(cat) + '?7';
document .write('<iframe src="' + url + '" style="display:none"></iframe>');

24

N o s W N =

Wrong Context

function sanitize(v) {

return v.replace(/</g} "&1t;") Epcode all angle brackets
.replace 1 "> "y

var url = 'http://example.org;cat=' +
sanitize(cat) + '?7';
document .write('<iframe src="' + url + '" style="display:none"></iframe>');

Issues:
» Encoding angle brackets generally a good ideal

24

N o s W N =

Wrong Context

function sanitize(v) {
return v.replace(/</g, "<")
.replace(/>/g, ">");
+
var url = 'http://example.org;cat=' +
sanitize(cat) + '?7';

document .write('<iframe src=" " " style="display:none"></iframe>');

_ Injection Context
Issues:

» Encoding angle brackets generally a good ideal
— But... context is inside an attribute

24

N o s W N =

Wrong Context

function sanitize(v) {
return v.replace(/</g, "<")
.replace(/>/g, ">");
}
var url = 'http://example.org;cat=' +
sanitize(cat) + '?7';
document .write('<iframe src="' + url + '" style="display:none"></iframe>');

Issues:

» Encoding angle brackets generally a good ideal
— But... context is inside an attribute
— No angle brackets required to break out and inject payload

24

N o s W N =

Wrong Context

function sanitize(v) {
return v.replace(/</g, "<")
.replace(/>/g, ">");
}
var url = 'http://example.org;cat=' +
sanitize(cat) + '?7';
document .write('<iframe src="' + url + '" style="display:none"></iframe>');

Issues:

» Encoding angle brackets generally a good ideal
— But... context is inside an attribute
— No angle brackets required to break out and inject payload
— Example: " onload=alert (1) foo=

24

B W N e

Blocklisting

v = decodeURIComponent (location.hash.replace('#', '').split('/')[2]);
v = v.replace(/<img(.*)?(\/)7?>(.*)?7(<\/img>)?/gi, '")
.replace(/<a(.*)?(\/)?>(.*)?(<\/a>)?/gi, '")
.replace(/<script (.*x)7(\/)7>(.*)? (<\/script>)?/gi, '');
Issues:

25

[R N

Blocklisting

Delete all img tags with content

v = decodeURIComponent (location.hash.replace('#', '').split('/')[2]);

v = v.replace(/<img(.*)7(\/) 7>[(. %) ?(<\/img>)?/gi, '')
.replace(/<a(.*x)?(\/)?>(.*)?(<\/a>)?/gi, '")
.replace(/<script(.*)?(\/)?>(.*)? (\/script>)?/gi, '');

Issues:

25

[R N

Blocklisting

Delete all a tags with content

v = decodeURIComponent (location.hash.replace('#', '').split('/')[2]);

v = v.replace(/<img(.*)?(\/)7?>(. %) ?7(<\/img>)?/gi, '')
.replace(/<a(.*)?7(\/)?>/(.*x)?(<\/a>)?/gi, '')
.replace(/<script(.*)?(\/)?>(.*)? (<\/script>)?/gi, '');

Issues:

25

[R N

Blocklisting

v = decodeURIComponent (location.hash.replace('#', '').split('/')[2]);
v = v.replace(/<img(.*)?(\/)?>(.*)?(<\/img>)?/gi, '")
.replace(/<a(.*x)?(\/)?>(.*)?(<\/a>)?/gi, '")
.replace(/<script (.*x)7(\/)7>|(.%)? (<\/script>)?/gi, '');
Delete all script tags with content
Issues:

25

B W N e

Blocklisting

v = decodeURIComponent (location.hash.replace('#', '').split('/')[2]);
v = v.replace(/<img(.*)?(\/)7?>(.*)?(<\/img>)7?/gi, '")
.replace(/<a(.*)?(\/)?>(.*)?(<\/a>)?/gi, '")
.replace(/<script (.*x)7(\/)7>(.*)? (<\/script>)?/gi, '');
Issues:

» Blocklisting is brittle by nature

25

B W N e

Blocklisting

v = decodeURIComponent (location.hash.replace('#', '').split('/')[2]);

v = v.replace(/<img(.*)?(\/)7?>(.*)?(<\/img>)7?/gi, '")
.replace(/<a(.*)?(\/)?>(.*)?(<\/a>)?/gi, '")
.replace(/<script(.*)?7(\/)7?>(.*)7 (<\/script>)?/gi, '');

Issues:

» Blocklisting is brittle by nature
» Several other tags can be used to inject payloads:

25

B W N e

Blocklisting

v = decodeURIComponent (location.hash.replace('#', '').split('/')[2]);

v = v.replace(/<img(.*)?(\/)7?>(.*)?(<\/img>)7?/gi, '")
.replace(/<a(.*)?(\/)?>(.*)?(<\/a>)?/gi, '")
.replace(/<script(.*)?7(\/)7?>(.*)7 (<\/script>)?/gi, '');

Issues:

» Blocklisting is brittle by nature
» Several other tags can be used to inject payloads:
— E.g., <image> behaves exactly the same as

25

[R N

Blocklisting

decodeURIComponent (location.hash.replace('#', '').split('/')[2]);

= v.replace(/<img(.*)?7(\/)?>(.*)?(<\/img>) ?/gi, '")

.replace(/<a(.*)?7(\/)?>(.*x)7(<\/a>)7/gi, '")

.replace(/<script (.*)?(\/)?>(.*)7 (<\/script>)?/gi, '');
Matching closing tags

Issues:

» Blocklisting is brittle by nature
» Several other tags can be used to inject payloads:
— E.g., <image> behaves exactly the same as

Small aside:
» HTML parsers accept attributes in end tags (and ignore them)

25

o U s W N =

Regular Expressions Limitations

var url = location.href.replace(/<script[\S\s]*?\1>|<\/?(alimg) [*>]*>/gi, "")
.replace('""', "")
.replace(">", "")
.replace("#", nu)
.replace("<", "");
document.write('<script type="text/javascript" src="example.org?url='+url+"'"
— ></script>');

Issues:

26

L= L B

Regular Expressions Limitations

Delete all script, a and img tags

var url = location.href.replace(/<script[\S\s]*?\1>[<\/?(alimg) [*>]*>/gi], "")
.replace('""', "")
.replace(">", "")
.replace("#", nu)
.replace("<", "");
document.write('<script type="text/javascript" src="example.org?url='+url+"'"
— ></script>');

Issues:

26

o U s W N =

Regular Expressions Limitations

var url = location.href.replace(/<script[\S\s]*?\1>|<\/?(alimg) [*>]*>/gi, "")
.replace('""', "")
.replace(">", "")
.replace("#", nu)
.replace("<", "");
document.write('<script type="text/javascript" src="example.org?url='+url+"'"
— ></script>');

Issues:

» Regular Expressions do a single scan over the input

26

Ut e W N

Regular Expressions Limitations

var url = location.href.replace(/<script[\S\s]*?\1>|<\/?(alimg) [*>]*>/gi, "")
.replace('""', "")
.replace(">", "")
.replace("#", "")
.replace("<", "");
document .write('<script type="text/javascript" src="example.org?url='+url+'"
< ></script>');

Issues:

» Regular Expressions do a single scan over the input
— E.g., <sc<a>ript> would only have the inner tag removed

26

o U s W N =

Regular Expressions Limitations

var url = location.href.replace(/<script[\S\s]*?\1>|<\/?(alimg) [*>]*>/gi, "")

.replace
.replace
.replace
.replace

L} , n |I)

">"|, "") Remove dangerous characters
Il#ll , n ll)

Il<|| 5 n |I);

document.write('<script type="text/javascript" src="example.org?url='+url+"'"
— ></script>');

Issues:

» Regular Expressions do a single scan over the input
» The JavaScript API for replace() is somewhat unintuitive

26

o U s W N =

Regular Expressions Limitations

var url = location.href.replace(/<script[\S\s]*?\1>|<\/?(alimg) [*>]*>/gi, "")
.replace('""', "")
.replace(">", "")
.replace("#", "")
.replace("<", "");
document.write('<script type="text/javascript" src="example.org?url='+url+"'"
— ></script>');

Issues:

» Regular Expressions do a single scan over the input
» The JavaScript API for replace() is somewhat unintuitive
— replace("<", "") replaces only the first occurrence of <

26

o Utk W N

Regular Expressions Limitations

var url = location.href.replace(/<script[\S\s]*?\1>|<\/?(alimg) [*>]*>/gi, "")
.replace('""', "")
.replace(">", "")
.replace("#", "")
.replace("<", "");
document.write('<script type="text/javascript" src="example.org?url='+url+"'"
— ></script>');

Issues:

» Regular Expressions do a single scan over the input
» The JavaScript API for replace() is somewhat unintuitive

— replace("<", "") replaces only the first occurrence of <
— To replace all, replace(/</g, "") has to be used

26

o U s W N =

Regular Expressions Limitations

var url = location.href.replace(/<script[\S\s]*?\1>|<\/?(alimg) [*>]*>/gi, "")
.replace('""', "")
.replace(">", "")
.replace("#", "")
.replace("<", "");
document.write('<script type="text/javascript" src="example.org?url='+url+"'"
— ></script>');

Issues:

» Regular Expressions do a single scan over the input
» The JavaScript API for replace() is somewhat unintuitive

— replace("<", "") replaces only the first occurrence of <
— To replace all, replace(/</g, "") has to be used
— One of the most frequent errors we encountered!

26

Mitigations

27

HTML Parser to Sanitize

I'll just use a HTML parser library to sanitize my input!

28

HTML Parser to Sanitize

I'll just use a HTML parser library to sanitize my input!

29

HTML Parser to Sanitize

I'll just use a HTML parser library to sanitize my input!

» Does this HTML parser actually behave like your visitor's browsers do?

29

Parser Confusion to Sanitizer Bypass

Payload: <select><iframe><script>payload()

30

Parser Confusion to Sanitizer Bypass

Payload: <select><iframe><script>payload()

Parsed by Google Caja

' #tag

select
A4
#tag
iframe

4

#ext
<script>payload()</script>

Parsed by Google Chrome

| #tag
select
\ 4

#tag
script

30

Parser Confusion to Sanitizer Bypass: Root Cause

4.8.5 The iframe element

Categories:

Flow content.
Phrasing content.
Embedded content.
Interactive content.
Palpable content.

Contexts in which this element can be used:
Where embedded content is expected.

Content model:
Nothing.

31

Parser Confusion to Sanitizer Bypass: Root Cause

The "nothing” content model
When an element’s content model is nothing, the element must contain no Text
nodes (other than inter-element whitespace) and no element nodes.

32

Parser Confusion to Sanitizer Bypass: Root Cause

The "nothing” content model
When an element’s content model is nothing, the element must contain no Text
nodes (other than inter-element whitespace) and no element nodes.

However. . .

32

Parser Confusion to Sanitizer Bypass: Root Cause

The "nothing” content model
When an element’s content model is nothing, the element must contain no Text
nodes (other than inter-element whitespace) and no element nodes.

However. . . the parsing specification says content of iframe should be parsed as text. ..

32

Parser Confusion to Sanitizer Bypass: Root Cause

The "nothing” content model
When an element’s content model is nothing, the element must contain no Text
nodes (other than inter-element whitespace) and no element nodes.

However. . . the parsing specification says content of iframe should be parsed as text. ..

div.innerHTML = “<iframe>"; : no code execution

32

Parser Confusion to Sanitizer Bypass: Root Cause

The "nothing” content model
When an element’s content model is nothing, the element must contain no Text
nodes (other than inter-element whitespace) and no element nodes.

However. . . the parsing specification says content of iframe should be parsed as text. ..
div.innerHTML = “<iframe>"; : no code execution

So the sanitizer is actually correct, but. ..

32

Parser Confusion to Sanitizer Bypass: Root Cause

The "nothing” content model
When an element’s content model is nothing, the element must contain no Text
nodes (other than inter-element whitespace) and no element nodes.

However. . . the parsing specification says content of iframe should be parsed as text. ..
div.innerHTML = “<iframe>"; : no code execution
So the sanitizer is actually correct, but. ..

Where has the iframe gone actually?

32

The missing iframe

Recall the payload: <select><iframe><script>payload()

33

The missing iframe

Recall the payload: <select><iframe><script>payload()

the select element
Content model:

Zero or more option, optgroup, and script-supporting elements.

33

The missing iframe

Recall the payload: <select><iframe><script>payload()

the select element
Content model:

Zero or more option, optgroup, and script-supporting elements.

“script-supporting elements” are script and template tags

33

The missing iframe

Recall the payload: <select><iframe><script>payload()

the select element
Content model:

Zero or more option, optgroup, and script-supporting elements.

“script-supporting elements” are script and template tags

Thus, an iframe can't be a child of select

33

The missing iframe

Recall the payload: <select><iframe><script>payload()

the select element
Content model:

Zero or more option, optgroup, and script-supporting elements.

“script-supporting elements” are script and template tags

Thus, an iframe can't be a child of select, and Chrome drops it

33

Parser Confusion to Sanitizer Bypass: Summary

Sanitization based on a “full” HTML parser needs to take into account:
» All subtleties of the HTML specification
— It's a 1300+ page document. ..

» How browsers diverge from it

34

Parser Confusion to Sanitizer Bypass: Summary

Sanitization based on a “full” HTML parser needs to take into account:
» All subtleties of the HTML specification
— It's a 1300+ page document. ..

» How browsers diverge from it

=> This also applies to server-side HTML sanitization!

34

How to protect yourself then?

35

Protection

1. Avoid the need to sanitize!

36

https://github.com/cure53/DOMPurify

Protection

1. Avoid the need to sanitize!
— Minimize putting user data into the DOM

36

https://github.com/cure53/DOMPurify

Protection

1. Avoid the need to sanitize!
— Minimize putting user data into the DOM
2. Avoid HTML markup injection

36

https://github.com/cure53/DOMPurify

Protection

1. Avoid the need to sanitize!
— Minimize putting user data into the DOM
2. Avoid HTML markup injection

— Consider e.g., markdown for formatted input

36

https://github.com/cure53/DOMPurify

Protection

1. Avoid the need to sanitize!
— Minimize putting user data into the DOM
2. Avoid HTML markup injection

— Consider e.g., markdown for formatted input
— This allows to “just” encode everything

36

https://github.com/cure53/DOMPurify

Protection

1. Avoid the need to sanitize!
— Minimize putting user data into the DOM
2. Avoid HTML markup injection

— Consider e.g., markdown for formatted input
— This allows to “just” encode everything
— Please recall the DOM clobbering talk!

36

https://github.com/cure53/DOMPurify

Protection

1. Avoid the need to sanitize!
— Minimize putting user data into the DOM
2. Avoid HTML markup injection

— Consider e.g., markdown for formatted input
— This allows to “just” encode everything
— Please recall the DOM clobbering talk!

3. Use a well tested library

36

https://github.com/cure53/DOMPurify

Protection

1. Avoid the need to sanitize!
— Minimize putting user data into the DOM
2. Avoid HTML markup injection

— Consider e.g., markdown for formatted input
— This allows to “just” encode everything
— Please recall the DOM clobbering talk!
3. Use a well tested library
- E.g., DOMPurify

36

https://github.com/cure53/DOMPurify

Protection

1. Avoid the need to sanitize!
— Minimize putting user data into the DOM
2. Avoid HTML markup injection

— Consider e.g., markdown for formatted input
— This allows to “just” encode everything
— Please recall the DOM clobbering talk!
3. Use a well tested library
- E.g., DOMPurify
— Keep it up to date!

36

https://github.com/cure53/DOMPurify

Way Forward?

Two upcoming browser features:
» Sanitizer API
» Trusted Types

37

Sanitizer API

» Buy in by Mozilla, Google and Microsoft. Safari has not implemented it (yet?)

38

Sanitizer API

» Buy in by Mozilla, Google and Microsoft. Safari has not implemented it (yet?)

Goal: Adding a robust and secure by default HTML sanitizer

38

Sanitizer API

» Buy in by Mozilla, Google and Microsoft. Safari has not implemented it (yet?)

Goal: Adding a robust and secure by default HTML sanitizer

» Updated with the browser, so any bypasses are fixed automatically

38

[un

N o e W N

Sanitizer API: Usage

let node = document.createElement('div');

|Let sanitizer = new Sanitizer Of Create Sanitizer object
let payload = '';
node.setHTML (payload, sanitizer);

let sanitized = sanitizer.sanitizeFor('div', payload);
node.replaceChildren(. . .sanitized.childNodes);

// innerHTML of node is: after both calls

Figure: Usage of the Sanitizer API

39

[un

N o e W N

Sanitizer API: Usage

let node = document.createElement('div');

let sanitizer = new Sanitizer();

let payload = '';

Inode . setHTML (payload, sanitizer)f Option 1

let sanitized = sanitizer.sanitizeFor('div', payload);
node.replaceChildren(. . .sanitized.childNodes);

// innerHTML of node is: after both calls

Figure: Usage of the Sanitizer API

39

[un

N o e W N

Sanitizer API: Usage

let node = document.createElement('div');

let sanitizer = new Sanitizer();

let payload = '';
node.setHTML (payload, sanitizer);

let sanitized = sanitizer.sanitizeFor('div', payload)

Option 2

node.replaceChildren(...sanitized.childNodes) ;

// innerHTML of node is: after both calls

Figure: Usage of the Sanitizer API

39

Sanitizer API: Takeaways

Positives:

40

Sanitizer API: Takeaways

Positives:

Secure by default & no footgun potential

40

Sanitizer API: Takeaways

Positives:
Secure by default & no footgun potential

— It uses exactly the same HTML parser as the browser

40

Sanitizer API: Takeaways

Positives:
Secure by default & no footgun potential
— It uses exactly the same HTML parser as the browser

— So not divergences in parsing behavior possible

Negatives:

40

Sanitizer API: Takeaways

Positives:
Secure by default & no footgun potential
— It uses exactly the same HTML parser as the browser

— So not divergences in parsing behavior possible

Negatives:

Enforces secure usage via API

40

Sanitizer API: Takeaways

Positives:
Secure by default & no footgun potential
— It uses exactly the same HTML parser as the browser

— So not divergences in parsing behavior possible

Negatives:

Enforces secure usage via API

» string to string sanitization not supported

40

Sanitizer API: Takeaways

Positives:
Secure by default & no footgun potential
— It uses exactly the same HTML parser as the browser

— So not divergences in parsing behavior possible

Negatives:

Enforces secure usage via API

» string to string sanitization not supported
=> Does not match how a lot of applications are written!

40

Sanitizer API: Takeaways

Positives:
Secure by default & no footgun potential
— It uses exactly the same HTML parser as the browser

— So not divergences in parsing behavior possible

Negatives:

Enforces secure usage via API

» string to string sanitization not supported
=> Does not match how a lot of applications are written!

40

Sanitizer API: Takeaways

Positives:
Secure by default & no footgun potential
— It uses exactly the same HTML parser as the browser

— So not divergences in parsing behavior possible

Negatives:

Enforces secure usage via API

» string to string sanitization not supported
=> Does not match how a lot of applications are written!

Still under development

40

Sanitizer API: Takeaways

Positives:
Secure by default & no footgun potential
— It uses exactly the same HTML parser as the browser

— So not divergences in parsing behavior possible

Negatives:

Enforces secure usage via API

» string to string sanitization not supported
=> Does not match how a lot of applications are written!

Still under development

» Not yet ready for productive use

40

Trusted Types

41

Trusted Types

Idea: Ensure sanitization via strong typing

41

Trusted Types

Idea: Ensure sanitization via strong typing

Buy in only by Google, Microsoft

41

Trusted Types

Idea: Ensure sanitization via strong typing

Buy in only by Google, Microsoft

» Make sinks accept Trusted values instead of strings

» Assigning strings gives a type error

41

Trusted Types: Enforcement

Changing API for . innerHTML hugely invasive!

42

Trusted Types: Enforcement

Changing API for . innerHTML hugely invasive!

» Breaks legacy code

42

Trusted Types: Enforcement

Changing API for . innerHTML hugely invasive!

» Breaks legacy code
» Solution: Allow website to opt-into enforcement

42

Trusted Types: Enforcement

Changing API for . innerHTML hugely invasive!

» Breaks legacy code
» Solution: Allow website to opt-into enforcement

Add a Content Security Policy (CSP) directive!

42

Trusted Types: Enforcement

Changing API for . innerHTML hugely invasive!

» Breaks legacy code
» Solution: Allow website to opt-into enforcement

Add a Content Security Policy (CSP) directive!

require-trusted-types—for ’script’;

42

Ut R W N =

Trusted Types: Usage

const p = '';

htmlPolicy = trustedTypes.createPolicy('sanitize', {
createHTML: s => s.replace(/\</g, '<')

1);

node. innerHTML

node.innerHTML

htmlPolicy.createHTML (p) ;
P

Figure: Creating and Using a Trusted Types Policy

43

Ut R W N =

Trusted Types: Usage

const p = '';

|htmlPolicy = trustedTypes.createPolicy('sanitize',|Create a Trusted Types Policy
createHTML: s => s.replace(/\</g, '<')

B

node.innerHTML

node.innerHTML

htmlPolicy.createHTML(p) ;
P

Figure: Creating and Using a Trusted Types Policy

43

Ut R W N =

Trusted Types: Usage

const p = '';
htmlPolicy = trustedTypes.createPolicy('sanitize', {

|createHTML: s => s.replace(/\</g, '<')| Define a Sanitizer for HTML sinks

b;
node.innerHTML
node.innerHTML

htmlPolicy.createHTML(p) ;
P

Figure: Creating and Using a Trusted Types Policy

43

Ut R W N =

Trusted Types: Usage

const p = '';

htmlPolicy = trustedTypes.createPolicy('sanitize', {
createHTML: s => s.replace(/\</g, '<')

1)

node. innerHTML

node.innerHTML

[htmlPolicy.createHTML(p) ;| Use Policy to create TrustedHTML
p;

Figure: Creating and Using a Trusted Types Policy

43

Trusted Types: Usage

const p = '';

htmlPolicy = trustedTypes.createPolicy('sanitize', {
createHTML: s => s.replace(/\</g, '<')

K

[node. innerHTML

node.innerHTML

htmlPolicy.createHTML(p) ;| Secure Assignment
P

Figure: Creating and Using a Trusted Types Policy

43

Trusted Types: Usage

const p = '';

htmlPolicy = trustedTypes.createPolicy('sanitize', {
createHTML: s => s.replace(/\</g, '<')

s

node.innerHTML = htmlPolicy.createHTML (p) ;

[pode. innerHTML = p;| Insecure Assignment

Figure: Creating and Using a Trusted Types Policy

43

Trusted Types: Takeaways

Enforcing sanitization fantastic idea!

44

Trusted Types: Takeaways

Enforcing sanitization fantastic idea!

» No suggestions about sanitization itself
» The broken ones shown before could be used as policy — false sense of security

» Requires a “generic” sanitizer
» Usability Issues
— Do you know about the undocumented parameters?

44

Trusted Types: Takeaways

Enforcing sanitization fantastic idea!

» No suggestions about sanitization itself
» The broken ones shown before could be used as policy — false sense of security

» Requires a “generic” sanitizer
» Usability Issues
— Do you know about the undocumented parameters?

Google and Microsoft only technology

44

Trusted Types: Takeaways

Enforcing sanitization fantastic idea!

» No suggestions about sanitization itself
» The broken ones shown before could be used as policy — false sense of security

» Requires a “generic” sanitizer
» Usability Issues
— Do you know about the undocumented parameters?

Google and Microsoft only technology

— Idea is you get Trusted Types for free when using frameworks such as Angular

44

Key Takeaways

» Client-Side XSS still an issue

45

Key Takeaways

» Client-Side XSS still an issue
» Deployed sanitizers are neither generic nor minimal

45

Key Takeaways

» Client-Side XSS still an issue
» Deployed sanitizers are neither generic nor minimal

» First party sanitizers more likely to be vulnerable than third party ones

45

Key Takeaways

» Client-Side XSS still an issue
» Deployed sanitizers are neither generic nor minimal

» First party sanitizers more likely to be vulnerable than third party ones
» Developers misunderstand key aspects of JavaScript, including:

45

Key Takeaways

» Client-Side XSS still an issue
» Deployed sanitizers are neither generic nor minimal

» First party sanitizers more likely to be vulnerable than third party ones
» Developers misunderstand key aspects of JavaScript, including:
— URL encoding functionality: escape, encodeURI(Component)

45

Key Takeaways

» Client-Side XSS still an issue
» Deployed sanitizers are neither generic nor minimal

» First party sanitizers more likely to be vulnerable than third party ones
» Developers misunderstand key aspects of JavaScript, including:

— URL encoding functionality: escape, encodeURI(Component)
— Regular expression usage

45

Key Takeaways

» Client-Side XSS still an issue
» Deployed sanitizers are neither generic nor minimal

» First party sanitizers more likely to be vulnerable than third party ones
» Developers misunderstand key aspects of JavaScript, including:

— URL encoding functionality: escape, encodeURI(Component)
— Regular expression usage
— Parts of the standard library

45

Thank you for your attention!

1

CASA

CYBER SECURITY IN THE AGE
OF LARGE-SCALE ADVERSARIES

Resources

github.com/SAP/project-foxhound
github.com/ias-tubs/hand_sanitizer

% david.klein@tu-braunschweig.de
M david-klein-b2aa80254
¥ twitter.com/ncd_leen

46

github.com/SAP/project-foxhound
github.com/ias-tubs/hand_sanitizer
david.klein@tu-braunschweig.de
https://www.linkedin.com/in/david-klein-b2aa80254/
twitter.com/ncd_leen

Summary

» 3887 out of 20000 websites contained interesting data flows.
» We found 705 unique sanitizers on 1415 out of those 3887 domains.

» 88 sanitizers on 102 domains detected as insecure by SemAttack.

Client-Side XSS still an issue
Deployed sanitizers are neither generic nor minimal
First party sanitizers more likely to be vulnerable than third party ones

Developers misunderstand key aspects of JavaScript

47

	Large Scale Study
	Mitigations
	How to protect yourself then?
	Trusted Types

