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Client Side XSS: Root Cause

let name = location.hash.substr(l);

let greeting = "Hello, " + name;
/*

Application code
*/

div.innerHTML = greeting;

Visiting:
foo.com#<b>RuhrSec</b>

Hello, RuhrSec
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Client Side XSS: Root Cause

let name = location.hash.substr(l);

let greeting = "Hello, " + name;
/*

Application code
3/

div.innerHTML = greeting;

Visiting:
foo.com#<img src=x onerror=alert(’xss’)>
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Client Side XSS: Root Cause
No difference between data and markup in HTML

let name = location.hash.substr(l);

let greeting = "Hello, " + name;
/*

Application code
*/

div.innerHTML = greeting;
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Client Side XSS: Root Cause

Source: Attacker controlled data

Source

let name = [location.hash| substr(1);

let greeting = "Hello, " + name;
/*

Application code
*/

div.innerHTML = greeting;
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Client Side XSS: Root Cause
Sink: Turned into (executable) code

let name = location.hash.substr(l);

let greeting = "Hello, " + name;
/*

Application code
*/

|[div.innerHTML = greeting}
Sink
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Client Side XSS: Root Cause

Unprotected data flow from source to sink

Source

let name = [location.hash| substr(1);

let greeting = "Hello, " + name;
/*
Application/ code
*/
|[div.innerHTML = greeting}

Sink
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Client Side XSS: Protection

» Solution: Sanitizer
» Removes “dangerous chars” from input
» Hand-written sanitizers dubbed hand sanitizer

let name = location.hash.substr(l);
let greeting = "Hello, " + name;

/%

*/
greeting = |sanitize(greeting)| Sanitizer
/*

y

div.innerHTML = greeting;
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Client Side XSS: Protection

» Solution: Sanitizer
» Removes “dangerous chars” from input
» Hand-written sanitizers dubbed hand sanitizer

Source
let name = [location.hash| substr(1);
let greeting = "Hello, " + name;
/%
*/

greeting = |sanitize(greeting)| Sanitizer
/*

*/
|[div.innerHTML = greeting}

Sink
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Client Side XSS: Protection

» Solution: Sanitizer
» Removes “dangerous chars” from input
» Hand-written sanitizers dubbed hand sanitizer

Source
let name = [location.hash| substr(1);
let greeting = "Hgllo, " + name;
/%
*/

greeting = |sanitize(greeting)| Sanitizer

/%
*/... /

|[div.innerHTML = greeting}
Sink
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1 function sanitize(s) {
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Figure: HTML Sanitizer



Sanitizing: Difficulties

What about this?

function sanitize(s) {
return s.replace("<", "").replace(">", "");

}

Figure: HTML Sanitizer

Visiting:
foo.com#<img src=x onerror=alert(’xss’)>

Hello, img src=x onerror=alert('xss')



Sanitizing: Difficulties
What about this?

function sanitize(s) {
return s.replace("<", "").replace(">", "");

}

Figure: HTML Sanitizer

Visiting:
foo.com#<><img src=x onerror=alert(’xss’)>




Sanitizing: Difficulties
What about this?

function sanitize(s) {
return s.replace("<", "").replace(">", "");

}

Figure: HTML Sanitizer

Visiting:
foo.com#<><img src=x onerror=alert(’xss’)>




How to sanitize?

» We have 3 injection contexts
— HTML, HTML attribute and JavaScript
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How to sanitize?

» We have 3 injection contexts

» Exploits require different characters per context

Characters to be encoded per injection context

Context OWASP Recommendations

HTML <>’ "g& except HTML encoded chars

HTML Attr. The quote characters (" and ’) as well as characters usable to break out
of unquoted attribute values (including: [spacel % * + , - / ; < =>~
and |), properties and event handlers

JavaScript non-alphanumeric except ,._ whitespace or hex/unicode encoded
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» escape, encodeURI, encodeURIcomponent
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Challenges for Developers

The JavaScript standard library has 3 functions that look somewhat related:
» escape, encodeURI, encodeURIcomponent

=> None do what's required. . .
» They all encode a subset of “dangerous” characters

What now?

Hey, folks know regex!



Regular Expressions to the Rescue!

IF YOURE HAVIN' PERL
PROBLEMS T FEEL
BAD FoR Yo, SON—

3

T cor 99

i

S0 T LsED

i

Now T HAVE
100 PROBLEMS.

i

Figure: https://xkcd.com/1171/
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Regular Expressions to the Rescue!

IF YOURE HAVIN' PERL
PROBLEMS T FEEL
BAD FoR Yo, SON—

3

T cor 99

i

S0 T LsED

i

Now T HAVE
100 PROBLEMS.

i
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HTML is not a regular language. ..

=> Regular Expressions unsuited to parse it
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Regular Expressions to the Rescue!

n-'waaﬂmnanﬂa. T GOT 99 SOTUSED || Now T HAvE
PROBLEMS, 100 PROBLEMS.
Bnnt—'oemu sm—

B RTIRTT

Figure: https://xkcd.com/1171/

HTML is not a regular language. ..

=> Regular Expressions unsuited to parse it
» Parsing it requires to build and manipulate a DOM while traversing the input


https://xkcd.com/1171/

Sanitizing: Difficulties

Very difficult to get right. ..



Sanitizing: Difficulties

Very difficult to get right. ..

More than half of the DOM XSS root causes were due to bugs in HTML

sanitizers

—Google Research: Trusted Types - mid 2021 report



Large Scale Study

10



State of Sanitization on the Web

We asked ourselves two questions:
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We asked ourselves two questions:

Q1: How prevalent are sanitizers?
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State of Sanitization on the Web

We asked ourselves two questions:
Q1: How prevalent are sanitizers?

Q2: Are they actually secure?

11



Study: Setup

Data Collection

Evaluation

Sanitizer Extraction

Security Analysis
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Project Foxhound

» Firefox fork enhanced with taint-tracking capabilities
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Project Foxhound

» Firefox fork enhanced with taint-tracking capabilities

» Also records all operations that occurred on tainted values
— Deep insight into inner working of web application

» Open source, actively maintained and compatible with Playwright
=> good addition to security testing toolbelt

13
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» Visit top 20000 websites
» Record data flows relevant to Client-Side XSS
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0 Data Collection

» Take our taint browser

» Visit top 20000 websites
» Record data flows relevant to Client-Side XSS
— Occurred on 3887 domains

14



9 Sanitizer Detection

- location.hash
replace(/</, ’’)
replace(/>/, *?)
concat

concat
innerHTML
T

SN
N
NN

AN
~

N

N

NN
NN
NN
NNNNN
NN
NN

Is]

N

HE




9 Sanitizer Detection

e

greeting

innerHTML
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location.hash
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AN

replace

replace
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Sanitizer Detection
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e Sanitizer Analysis

@#ﬂm

Q@m
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e Sanitizer Analysis
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SemAttack
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9 Sanitizer Analysis

& <
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i <>

SemAttack

any char

Post Image
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9 Sanitizer Analysis

<>

<>

SemAttack

any char

start

Post Image

<img src=x
onerror=alert(’XSS’)>

XSS Payload
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9 Sanitizer Analysis
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any char

<img src=x
onerror=alert (’XSS’)>
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SemAttack

any char

<img src=x

onerror=alert (’XSS’)>
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° Validation

Pre Image

any char
E . . / start (0 )

SemAttack

<img src=x
onerror=alert (’XSS’)>
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o Validation

Pre Image

!

Sanitizer Bypass

<><img src=x
onerror=alert(’XSS’)>

any char

<>

<>

SemAttack

<img src=x
onerror=alert (’XSS’)>
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o Validation

Pre Image

Sanitizer Bypass

img src=x
onerror=alert(’XSS’)>

any char

<>

<>

SemAttack

<img src=x
onerror=alert (’XSS’)>
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e Validation

Pre Image

L (—’0(/”‘

Sanitizer Bypass
<><img src=x
onerror=alert(’XSS’)>

SemAttack

any char

<img src=x
onerror=alert (’XSS’)>

Validate
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Results

» 3887 out of 20000 websites contained interesting data flows.
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Results

» 3887 out of 20000 websites contained interesting data flows.
» We found 705 unique sanitizers on 1415 out of those 3887 domains.

» 88 sanitizers on 102 domains detected as insecure by SemAttack.
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Results

h With Sanitizer
‘ 1 3rd Party Sanitizer
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It Validated Sanitizer
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Cabinet of Horrors

Effective against germs, but not against XSS payloads!
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Optimized for specific Payload

function f(v) {
return v.replace(/'/g, "").replace(/\(/g, "")
.replace(/\)/g, "").replace(/alert/g, "");

+
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Optimized for specific Payload

function f(v) { Delete all Single Quotes

return v.replace, "n).replace(/\(/g, "")
.replace(/\)/g, "").replace(/alert/g, "");
}

23
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Optimized for specific Payload

function f(v) {
return v.replace(/'/g, "").replace(/\(/g, "")

.replace "").replace(/alert/g, "");
}

Delete all Parentheses

23
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Optimized for specific Payload

function f(v) {
return v.replace(/'/g, "").replace(/\(/g, "")

.replace(/\)/g, "").replace(/alert/g, "");
’ Delete dangerous payload

23
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Optimized for specific Payload

function f(v) {
return v.replace(/'/g, "").replace(/\(/g, "")
.replace(/\)/g, "").replace(/alert/g, "");

+

Issues:
» Real hackers do not use alert
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[ R N

Optimized for specific Payload

function f(v) {
return v.replace(/'/g, "").replace(/\(/g, "")
.replace(/\)/g, "").replace(/alert/g, "");

}

Issues:

» Real hackers do not use alert
» Removing Parentheses to prevent function calls seems reasonable?

— But.. . JavaScript is crazy
— confirm xss~ works as well

23
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Wrong Context

function sanitize(v) {
return v.replace(/</g, "&lt;")
.replace(/>/g, "&gt;");
X
var url = 'http://example.org;cat=' +
sanitize(cat) + '?7';
document .write('<iframe src="' + url + '" style="display:none"></iframe>');

24
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Wrong Context

function sanitize(v) {

return v.replace(/</g} "&1t;") Epcode all angle brackets
.replace 1 "&gt; "y

var url = 'http://example.org;cat=' +
sanitize(cat) + '?7';
document .write('<iframe src="' + url + '" style="display:none"></iframe>');

Issues:
» Encoding angle brackets generally a good ideal
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Wrong Context

function sanitize(v) {
return v.replace(/</g, "&lt;")
.replace(/>/g, "&gt;");
+
var url = 'http://example.org;cat=' +
sanitize(cat) + '?7';

document .write('<iframe src=" " " style="display:none"></iframe>');

_ Injection Context
Issues:

» Encoding angle brackets generally a good ideal
— But... context is inside an attribute
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N o s W N =

Wrong Context

function sanitize(v) {
return v.replace(/</g, "&lt;")
.replace(/>/g, "&gt;");
}
var url = 'http://example.org;cat=' +
sanitize(cat) + '?7';
document .write('<iframe src="' + url + '" style="display:none"></iframe>');

Issues:

» Encoding angle brackets generally a good ideal
— But... context is inside an attribute
— No angle brackets required to break out and inject payload
— Example: " onload=alert (1) foo=

24
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Blocklisting

v = decodeURIComponent (location.hash.replace('#', '').split('/')[2]);
v = v.replace(/<img(.*)?(\/)7?>(.*)?7(<\/img>)?/gi, '")
.replace(/<a(.*)?(\/)?>(.*)?(<\/a>)?/gi, '")
.replace(/<script (.*x)7(\/)7>(.*)? (<\/script>)?/gi, '');
Issues:

25
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Blocklisting

Delete all img tags with content

v = decodeURIComponent (location.hash.replace('#', '').split('/')[2]);

v = v.replace(/<img(.*)7(\/) 7>[(. %) ?(<\/img>)?/gi, '')
.replace(/<a(.*x)?(\/)?>(.*)?(<\/a>)?/gi, '")
.replace(/<script(.*)?(\/)?>(.*)? (\/script>)?/gi, '');

Issues:
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Blocklisting

Delete all a tags with content

v = decodeURIComponent (location.hash.replace('#', '').split('/')[2]);

v = v.replace(/<img(.*)?(\/)7?>(. %) ?7(<\/img>)?/gi, '')
.replace(/<a(.*)?7(\/)?>/(.*x)?(<\/a>)?/gi, '')
.replace(/<script(.*)?(\/)?>(.*)? (<\/script>)?/gi, '');

Issues:
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Blocklisting

v = decodeURIComponent (location.hash.replace('#', '').split('/')[2]);
v = v.replace(/<img(.*)?(\/)?>(.*)?(<\/img>)?/gi, '")
.replace(/<a(.*x)?(\/)?>(.*)?(<\/a>)?/gi, '")
.replace(/<script (.*x)7(\/)7>|(.%)? (<\/script>)?/gi, '');
Delete all script tags with content
Issues:
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v = decodeURIComponent (location.hash.replace('#', '').split('/')[2]);
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.replace(/<script(.*)?7(\/)7?>(.*)7 (<\/script>)?/gi, '');

Issues:

» Blocklisting is brittle by nature
» Several other tags can be used to inject payloads:
— E.g., <image> behaves exactly the same as <img>
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[ R N

Blocklisting

decodeURIComponent (location.hash.replace('#', '').split('/')[2]);

= v.replace(/<img(.*)?7(\/)?>(.*)?(<\/img>) ?/gi, '")

.replace(/<a(.*)?7(\/)?>(.*x)7(<\/a>)7/gi, '")

.replace(/<script (.*)?(\/)?>(.*)7 (<\/script>)?/gi, '');
Matching closing tags

Issues:

» Blocklisting is brittle by nature
» Several other tags can be used to inject payloads:
— E.g., <image> behaves exactly the same as <img>

Small aside:
» HTML parsers accept attributes in end tags (and ignore them)

25
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Regular Expressions Limitations

var url = location.href.replace(/<script[\S\s]*?\1>|<\/?(alimg) [*>]*>/gi, "")
.replace('""', "")
.replace(">", "")
.replace("#", nu)
.replace("<", "");
document.write('<script type="text/javascript" src="example.org?url='+url+"'"
— ></script>');

Issues:

26
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Regular Expressions Limitations

Delete all script, a and img tags

var url = location.href.replace(/<script[\S\s]*?\1>[<\/?(alimg) [*>]*>/gi], "")
.replace('""', "")
.replace(">", "")
.replace("#", nu)
.replace("<", "");
document.write('<script type="text/javascript" src="example.org?url='+url+"'"
— ></script>');

Issues:

26
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Regular Expressions Limitations
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.replace(">", "")
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» Regular Expressions do a single scan over the input
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Regular Expressions Limitations

var url = location.href.replace(/<script[\S\s]*?\1>|<\/?(alimg) [*>]*>/gi, "")
.replace('""', "")
.replace(">", "")
.replace("#", "")
.replace("<", "");
document .write('<script type="text/javascript" src="example.org?url='+url+'"
< ></script>');

Issues:

» Regular Expressions do a single scan over the input
— E.g., <sc<a>ript> would only have the inner tag removed

26
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Regular Expressions Limitations

var url = location.href.replace(/<script[\S\s]*?\1>|<\/?(alimg) [*>]*>/gi, "")

.replace
.replace
.replace
.replace

L} , n |I)

">"|, "") Remove dangerous characters
Il#ll , n ll)

Il<|| 5 n |I);

document.write('<script type="text/javascript" src="example.org?url='+url+"'"
— ></script>');

Issues:

» Regular Expressions do a single scan over the input
» The JavaScript API for replace() is somewhat unintuitive
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Regular Expressions Limitations

var url = location.href.replace(/<script[\S\s]*?\1>|<\/?(alimg) [*>]*>/gi, "")
.replace('""', "")
.replace(">", "")
.replace("#", "")
.replace("<", "");
document.write('<script type="text/javascript" src="example.org?url='+url+"'"
— ></script>');

Issues:

» Regular Expressions do a single scan over the input
» The JavaScript API for replace() is somewhat unintuitive

— replace("<", "") replaces only the first occurrence of <
— To replace all, replace(/</g, "") has to be used
— One of the most frequent errors we encountered!
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Mitigations
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HTML Parser to Sanitize

I'll just use a HTML parser library to sanitize my input!
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HTML Parser to Sanitize

I'll just use a HTML parser library to sanitize my input!
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HTML Parser to Sanitize

I'll just use a HTML parser library to sanitize my input!

» Does this HTML parser actually behave like your visitor's browsers do?

29



Parser Confusion to Sanitizer Bypass

Payload: <select><iframe><script>payload()

30



Parser Confusion to Sanitizer Bypass

Payload: <select><iframe><script>payload()

Parsed by Google Caja

' #tag

select
A4
#tag
iframe

4

#ext
<script>payload()</script>

Parsed by Google Chrome

| #tag
select
\ 4

#tag
script

30



Parser Confusion to Sanitizer Bypass: Root Cause

4.8.5 The iframe element

Categories:

Flow content.
Phrasing content.
Embedded content.
Interactive content.
Palpable content.

Contexts in which this element can be used:
Where embedded content is expected.

Content model:
Nothing.

31



Parser Confusion to Sanitizer Bypass: Root Cause

The "nothing” content model
When an element’s content model is nothing, the element must contain no Text
nodes (other than inter-element whitespace) and no element nodes.
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However. . .
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Parser Confusion to Sanitizer Bypass: Root Cause

The "nothing” content model
When an element’s content model is nothing, the element must contain no Text
nodes (other than inter-element whitespace) and no element nodes.
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Parser Confusion to Sanitizer Bypass: Root Cause

The "nothing” content model
When an element’s content model is nothing, the element must contain no Text
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Parser Confusion to Sanitizer Bypass: Root Cause

The "nothing” content model
When an element’s content model is nothing, the element must contain no Text
nodes (other than inter-element whitespace) and no element nodes.

However. . . the parsing specification says content of iframe should be parsed as text. ..
div.innerHTML = “<iframe><img src=x onerror=alert(1)>"; : no code execution
So the sanitizer is actually correct, but. ..

Where has the iframe gone actually?
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The missing iframe

Recall the payload: <select><iframe><script>payload()
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Content model:

Zero or more option, optgroup, and script-supporting elements.
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The missing iframe

Recall the payload: <select><iframe><script>payload()

the select element
Content model:

Zero or more option, optgroup, and script-supporting elements.

“script-supporting elements” are script and template tags

Thus, an iframe can't be a child of select, and Chrome drops it
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Parser Confusion to Sanitizer Bypass: Summary

Sanitization based on a “full” HTML parser needs to take into account:
» All subtleties of the HTML specification
— It's a 1300+ page document. ..

» How browsers diverge from it
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Parser Confusion to Sanitizer Bypass: Summary

Sanitization based on a “full” HTML parser needs to take into account:
» All subtleties of the HTML specification
— It's a 1300+ page document. ..

» How browsers diverge from it

=> This also applies to server-side HTML sanitization!
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How to protect yourself then?
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Protection

1. Avoid the need to sanitize!
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Protection

1. Avoid the need to sanitize!
— Minimize putting user data into the DOM
2. Avoid HTML markup injection

— Consider e.g., markdown for formatted input
— This allows to “just” encode everything
— Please recall the DOM clobbering talk!
3. Use a well tested library
- E.g., DOMPurify
— Keep it up to date!

36


https://github.com/cure53/DOMPurify

Way Forward?

Two upcoming browser features:
» Sanitizer API
» Trusted Types

37



Sanitizer API

» Buy in by Mozilla, Google and Microsoft. Safari has not implemented it (yet?)
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Sanitizer API

» Buy in by Mozilla, Google and Microsoft. Safari has not implemented it (yet?)

Goal: Adding a robust and secure by default HTML sanitizer

» Updated with the browser, so any bypasses are fixed automatically
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N o e W N

Sanitizer API: Usage

let node = document.createElement('div');

|Let sanitizer = new Sanitizer Of Create Sanitizer object
let payload = '<img src=x onerror=alert(1)>';
node.setHTML (payload, sanitizer);

let sanitized = sanitizer.sanitizeFor('div', payload);
node.replaceChildren(. . .sanitized.childNodes);

// innerHTML of node is: <img src="x"> after both calls

Figure: Usage of the Sanitizer API
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let node = document.createElement('div');

let sanitizer = new Sanitizer();

let payload = '<img src=x onerror=alert(1)>';

Inode . setHTML (payload, sanitizer)f Option 1

let sanitized = sanitizer.sanitizeFor('div', payload);
node.replaceChildren(. . .sanitized.childNodes);

// innerHTML of node is: <img src="x"> after both calls
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Sanitizer API: Usage

let node = document.createElement('div');

let sanitizer = new Sanitizer();

let payload = '<img src=x onerror=alert(1)>';
node.setHTML (payload, sanitizer);

let sanitized = sanitizer.sanitizeFor('div', payload)

Option 2

node.replaceChildren(...sanitized.childNodes) ;

// innerHTML of node is: <img src="x"> after both calls

Figure: Usage of the Sanitizer API
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Sanitizer API: Takeaways

Positives:
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Sanitizer API: Takeaways

Positives:
Secure by default & no footgun potential
— It uses exactly the same HTML parser as the browser

— So not divergences in parsing behavior possible

Negatives:

Enforces secure usage via API

» string to string sanitization not supported
=> Does not match how a lot of applications are written!

Still under development

» Not yet ready for productive use

40



Trusted Types
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Idea: Ensure sanitization via strong typing
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Trusted Types

Idea: Ensure sanitization via strong typing

Buy in only by Google, Microsoft

» Make sinks accept Trusted values instead of strings

» Assigning strings gives a type error

41



Trusted Types: Enforcement

Changing API for . innerHTML hugely invasive!
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Trusted Types: Enforcement

Changing API for . innerHTML hugely invasive!

» Breaks legacy code
» Solution: Allow website to opt-into enforcement

Add a Content Security Policy (CSP) directive!

require-trusted-types—for ’script’;
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Ut R W N =

Trusted Types: Usage

const p = '<img src=x onerror=alert(1)>';

htmlPolicy = trustedTypes.createPolicy('sanitize', {
createHTML: s => s.replace(/\</g, '&lt;')

1);

node. innerHTML

node.innerHTML

htmlPolicy.createHTML (p) ;
P

Figure: Creating and Using a Trusted Types Policy
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Trusted Types: Usage

const p = '<img src=x onerror=alert(1)>';

|htmlPolicy = trustedTypes.createPolicy('sanitize',|Create a Trusted Types Policy
createHTML: s => s.replace(/\</g, '&lt;')

B

node.innerHTML

node.innerHTML

htmlPolicy.createHTML(p) ;
P

Figure: Creating and Using a Trusted Types Policy
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Ut R W N =

Trusted Types: Usage

const p = '<img src=x onerror=alert(1)>';
htmlPolicy = trustedTypes.createPolicy('sanitize', {

|createHTML: s => s.replace(/\</g, '&lt;')| Define a Sanitizer for HTML sinks

b;
node.innerHTML
node.innerHTML

htmlPolicy.createHTML(p) ;
P

Figure: Creating and Using a Trusted Types Policy
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Trusted Types: Usage

const p = '<img src=x onerror=alert(1)>';

htmlPolicy = trustedTypes.createPolicy('sanitize', {
createHTML: s => s.replace(/\</g, '&lt;')

1)

node. innerHTML

node.innerHTML

[htmlPolicy.createHTML(p) ;| Use Policy to create TrustedHTML
p;

Figure: Creating and Using a Trusted Types Policy
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Trusted Types: Usage

const p = '<img src=x onerror=alert(1)>';

htmlPolicy = trustedTypes.createPolicy('sanitize', {
createHTML: s => s.replace(/\</g, '&lt;')

K

[node. innerHTML

node.innerHTML

htmlPolicy.createHTML(p) ;| Secure Assignment
P

Figure: Creating and Using a Trusted Types Policy
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Trusted Types: Usage

const p = '<img src=x onerror=alert(1)>';

htmlPolicy = trustedTypes.createPolicy('sanitize', {
createHTML: s => s.replace(/\</g, '&lt;')

s

node.innerHTML = htmlPolicy.createHTML (p) ;

[pode. innerHTML = p;| Insecure Assignment

Figure: Creating and Using a Trusted Types Policy
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Trusted Types: Takeaways

Enforcing sanitization fantastic idea!
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Trusted Types: Takeaways

Enforcing sanitization fantastic idea!

» No suggestions about sanitization itself
» The broken ones shown before could be used as policy — false sense of security

» Requires a “generic” sanitizer
» Usability Issues
— Do you know about the undocumented parameters?

Google and Microsoft only technology

— Idea is you get Trusted Types for free when using frameworks such as Angular

44



Key Takeaways

» Client-Side XSS still an issue
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Key Takeaways

» Client-Side XSS still an issue
» Deployed sanitizers are neither generic nor minimal

» First party sanitizers more likely to be vulnerable than third party ones
» Developers misunderstand key aspects of JavaScript, including:

— URL encoding functionality: escape, encodeURI(Component)
— Regular expression usage
— Parts of the standard library
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Thank you for your attention!

1

CASA

CYBER SECURITY IN THE AGE
OF LARGE-SCALE ADVERSARIES

Resources

github.com/SAP/project-foxhound
github.com/ias-tubs/hand_sanitizer

% david.klein@tu-braunschweig.de
M david-klein-b2aa80254
¥ twitter.com/ncd_leen
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github.com/SAP/project-foxhound
github.com/ias-tubs/hand_sanitizer
david.klein@tu-braunschweig.de
https://www.linkedin.com/in/david-klein-b2aa80254/
twitter.com/ncd_leen

Summary

» 3887 out of 20000 websites contained interesting data flows.
» We found 705 unique sanitizers on 1415 out of those 3887 domains.

» 88 sanitizers on 102 domains detected as insecure by SemAttack.

Client-Side XSS still an issue
Deployed sanitizers are neither generic nor minimal
First party sanitizers more likely to be vulnerable than third party ones

Developers misunderstand key aspects of JavaScript
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