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Android malware - why should we care?

Security Researchers Issue Warning Against New
Android Malware That Infiltrated Google Play Through
60 Apps With 100 Million Installs

Goldoson Android Malware Infects Over 100 Million Google Play Store
Downloads

New malware infects Android TVs,
IoT devices in 84 nations

A new malware has infected roughly 13,500 Internet of Things (loT) devices like Android TVs in



Android malware - statistics

Android vs iOS global market share (%)
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Android Security Model - The early days
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Android Security Model - More recently ...

Google Play
Protect

Use Google Play Protect to help keep your apps
safe and your data private

Google Play Protect checks your apps and devices for harmful behavior.

= It runs a safety check on apps from the Google Play Store before you download them.

» It checks your device for potentially harmful apps from other sources. These harmful apps
are sometimes called malware.

Send unknown apps to Google

If you install apps from unknown sources outside of the Google Play Store, Google Play Protect
may ask you to send unknown apps to Google. When you turn on the “Improve harmful app
detection” setting, you allow Google Play Protect to automatically send unknown apps to
Google.

How would Google implement this??



&
Machine Learning to the rescue! [\

Google Security Blog

The latest news and insights from Google on security and safety on the Internet

Keeping 2 billion Android devices safe with machine learning

May 24, 2018

Can we do better?

“In the most basic terms, machine learning means
training a computer algorithm to recognize a
behavior. To train the algorithm, we give it hundreds
of thousands of examples of that behavior.

In the case of Google Play Protect, we are developing
algorithms that learn which apps are "potentially
harmful” and which are "safe.” To learn about PHAs,
the machine learning algorithms analyze our entire
catalog of applications. Then our algorithms look at
hundreds of signals combined with anonymized data
to compare app behavior across the Android
ecosystem to find PHAs.”



Federated Learning: an alternative approach
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Communication-Efficient Learning of Deep Networks

Federated Learning (FL) rom Decenraliaed Dt

H. Brendan McMahan Eider Moore Daniel R Seth H: Blaise Agiiera y Arcas
Google, Inc., 651 N 34th St., Seattle, WA 98103 USA

e Also known as Collaborative Learning
® Firstintroduced and coined by Google in 2017
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Truong, Nguyen, Kai Sun, Siyao Wang, Florian Guitton, and Yike Guo. ‘Privacy Preservation in Federated Learning: Insights from the GDPR Perspective’. ArXiv:2011.05411 [Cs], 22 January 8
2021. http://arxiv.org/abs/2011.05411.



Classical malware detection vs FL-based malware detection

Feature Extraction

Method 1:
Static Analysis

Method 2:
Dynamic Analysis

Method 3:
Hybrid Analysis
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Federated Learning: opportunity & challenges

e Opportunity: self-evolving,
privacy preserving malware
classifier

e Challenge: data
minimization

® Proposal: share model
instead of data
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Federated Learning: assumption & risks

® Assumption: users
provide labels
® Risks:

o Inference
attacks: break
privacy

O Poisoning
attacks: break
performance

Supervised Learning Unsupervised Learning
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Inference attacks for FL
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Figure 2: Overview of inference attacks against collaborative learning.

L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting Unintended Feature Leakage in
Collaborative Learning,” in 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA,
US, May 2019, pp. 691-706. doi: 10.1109/SP.2019.00029.
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Poisoning attacks for FL

Local model
poisoning attacks

!

Learning
process

Data poisoning
attacks

!

Training data
collection

/ Model /

Figure 1: Data vs. local model poisoning attacks.

M. Fang, X. Cao, J. Jia, and N. Gong, “Local Model Poisoning Attacks to Byzantine-Robust Federated
Learning,” 2020, pp. 1605-1622. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/fang
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Our solution: Less Is More

$ sciendo

Proceedings on Privacy Enhancing Technologies ; 2021 (4):96-116

Rafa Galvez*, Veelasha Moonsamy, and Claudia Diaz

Less is More: A privacy-respecting Android
malware classifier using federated learning

® Semi-supervised Federated Learning
® User models can be trained without labels

O Leverage semi-supervised learning
e Address inference and poisoning attacks
O Reduce dimensionality

o Offset outliers from submitted parameters

Reference: V. Shejwalkar and A. Houmansadr, “Manipulating the Byzantine: Optimizing Model Poisoning Attacks and

Defenses for Federated Learning,” Feb. 2021, p. 18. [Online]. Available: https://www.ndss-symposium.org/wp-
content/uploads/2021-498-paper.pdf
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Semi-supervised learning

e Address the challenge of obtaining labeled . y
—— Supervised algorithm decision boundary
data oot -
---- Optimal decision boundary

® Two main assumptions:
O Examples close in feature space share
labels
o Different classes are separated by low
density regions
e Ensemble learning
o Multiple classifiers together

(a) Smoothness and low-density assumptions.

van Engelen, J.E., Hoos, H.H., 2020. A survey on semi-supervised learning. Mach Learn 109, 373—440. https://doi.org/10.1007/s10994-019-05855-6
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Safe semi-supervised learning

e How to keep improving with unlabeled L1 L2 L3 L4 LN

data? Wl W2 W3 W4 W5
e Always beat baseline performance

b b
max min/(f, Zaifi) — I(f, Z%’fi)
i=1 i=1

fe{+1,—-1} «

e Assumption: the correct prediction lies in
the combination of base learners

Li, Y., Guo, L., Zhou, Z., 2019. Towards Safe Weakly Supervised Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 43,
334-346. https://doi.org/10.1109/TPAMI.2019.2922396 16
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The LIM architecture
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R. Galvez, V. Moonsamy, and C. Diaz, “Less is More: A privacy-respecting Android malware classifier using federated learning,”
Proceedings on Privacy Enhancing Technologies, vol. 2021, no. 4, pp. 96-116, Oct. 2021, doi: 10.2478/popets-2021-0062.
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LIM preparation

e Step 1) train base learners of the ensemble
O How many? RF SVWM RF LR RF

o Which models? Wi w2 W3 W4 W5

o Fully supervised, or semi-supervised?
e We use a small number (5) to reduce dimensionality
O Security and privacy by design
® No restriction on which kinds of models
o We use random forests, SVMs, logistic regression, k-nearest-neighbours
O Room for improvement for specific applications

18



LIM round

Baseline classifier
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e Step 2) Share base learners
e Step 3) Users estimate new
parameters for local model

O Using their local data set Ok
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LIM round

e Step 6) Clients share new
parameters with the service
provider

e Step 7) Cloud averages client
parameters

e Step 8) Cloud averages client
and secret parameters
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LIM round

e Step9) Cloud shares new
parameters with clients

At any time, the cloud may:

® Retrain base learners
® Share new base learners
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Measuring success in LiM

Measuring success in ML is
hard
Application dependent!
o0 Malware <<< cleanware
O Minimize false positives
Precision: how many times |
detected malware was
actually malware
Recall: how many malware
apps | caught
F1 score: we care about
both
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Measuring success in LiM

F1 with precision=recall
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Results
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Results
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Every federation round:

Security analysis: poisoning

Users install apps (10% malware)
Adversary compromises 50% of
users to poison the model
Strategic: evade detection of

specific malicious app
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Results
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e Attack does not succeed
e Private cloud data set
e Small attack surface
O Few parameters
O Theymustadduptol
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Results
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Privacy analysis: inference

® Cloud wants to infer installed apps
o Membership inference
® Access to parameters of individual clients, per round
o Did the user install this app in last round?
e Method
o Train model with a single, unlabeled example of the target app
O Membership test: are submitted user parameters the same?
® Result: no success
o Not enough information in such a small set of parameters
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Future challenges

® Selection of base learners
o Performance!
® Integration in real-world
applications
o High quality library
o Easy deployability
e Evaluation in a real world
setting

RF SVM RF LR RF
Wi W2 W3 W4 W5

Release

simple design spike solutions
CRC cards profofypes
user stories
values
acceptance fest criteria
iteration plan

pair programming

software increment

unit test
continuous infegration

project velocity computed I

acceptance testing
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Future applications

e Automated grading
o Client model in the student
device
0 Cloud model in a (set of) schools
o LiM as encoder to generate
embeddings for later decoding
e Fraud detection
o Client models in individual banks
o0 Consortium for cloud model
O LiM as an ensemble of fraud
detectors
e Network programmability
O ML acceleration

31



Conclusion

* Semi-supervised learning broadens applicability of FL
* Lower dimensionality stops inference attack
* Private data set stops powerful poisoning attack

Thank you!

Paper: https://petsymposium.org/popets/2021/popets-2021-0062.pdf
Code: https://git.sr.ht/~rafagalvez/lim-python
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